Daisuke Hagiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7842513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. PLoS ONE, 2022, 17, e0262521.	2.5	14
2	Antibacterial diphenyl ether production induced by co-culture of Aspergillus nidulans and Aspergillus fumigatus. Applied Microbiology and Biotechnology, 2022, 106, 4169-4185.	3.6	6
3	Detection and Characterization of RNA Viruses in Red Macroalgae (Bangiaceae) and Their Food Product (Nori Sheets). Microbes and Environments, 2022, 37, n/a.	1.6	2
4	Discovery of divided RdRp sequences and a hitherto unknown genomic complexity in fungal viruses. Virus Evolution, 2021, 7, veaa101.	4.9	33
5	Deficiency of WFS1 leads to the impairment of AVP secretion under dehydration in male mice. Pituitary, 2021, 24, 582-588.	2.9	4
6	Interspecies Genomic Variation and Transcriptional Activeness of Secondary Metabolism-Related Genes in Aspergillus Section Fumigati. Frontiers in Fungal Biology, 2021, 2, .	2.0	5
7	Identification of Novel Mutations Contributing to Azole Tolerance of Aspergillus fumigatus through <i>In Vitro</i> Exposure to Tebuconazole. Antimicrobial Agents and Chemotherapy, 2021, 65, e0265720.	3.2	6
8	Intimate genetic relationships and fungicide resistance in multiple strains of <i>Aspergillus fumigatus</i> isolated from a plant bulb. Environmental Microbiology, 2021, 23, 5621-5638.	3.8	7
9	Development and validation of LAMP primer sets for rapid identification of Aspergillus fumigatus carrying the cyp51A TR46 azole resistance gene. Scientific Reports, 2021, 11, 17087.	3.3	4
10	Downregulation of the ypdA Gene Encoding an Intermediate of His-Asp Phosphorelay Signaling in Aspergillus nidulans Induces the Same Cellular Effects as the Phenylpyrrole Fungicide Fludioxonil. Frontiers in Fungal Biology, 2021, 2, .	2.0	2
11	Splitting of RNA-dependent RNA polymerase is common in <i>Narnaviridae</i> : Identification of a type II divided RdRp from deep-sea fungal isolates. Virus Evolution, 2021, 7, .	4.9	7
12	Genome Mining-Based Discovery of Fungal Macrolides Modified by glycosylphosphatidylinositol (GPI)–Ethanolamine Phosphate Transferase Homologues. Organic Letters, 2020, 22, 5876-5879.	4.6	16
13	Mycovirus-Induced Tenuazonic Acid Production in a Rice Blast Fungus Magnaporthe oryzae. Frontiers in Microbiology, 2020, 11, 1641.	3.5	22
14	Diverged and Active Partitiviruses in Lichen. Frontiers in Microbiology, 2020, 11, 561344.	3.5	9
15	Phenotypic and Molecular Biological Analysis of Polymycovirus AfuPmV-1M From Aspergillus fumigatus: Reduced Fungal Virulence in a Mouse Infection Model. Frontiers in Microbiology, 2020, 11, 607795.	3.5	21
16	A method for the preparation of electrocompetent cells to transform unicellular green algae, Coccomyxa (Trebouxiophyceae, Chlorophyta) strains Obi and KJ. Algal Research, 2020, 48, 101904.	4.6	10
17	Isolation of azole-resistant <i>Aspergillus fumigatus</i> from imported plant bulbs in Japan and the effect of fungicide treatment. Journal of Pesticide Sciences, 2020, 45, 147-150.	1.4	20
18	dsRNA-seq Reveals Novel RNA Virus and Virus-Like Putative Complete Genome Sequences from <i>Hymeniacidon sp.</i> Sponge. Microbes and Environments, 2020, 35, n/a.	1.6	21

#	Article	IF	CITATIONS
19	Viral RNA Genomes Identified from Marine Macroalgae and a Diatom. Microbes and Environments, 2020, 35, n/a.	1.6	17
20	The Cell Wall Integrity Pathway Contributes to the Early Stages of <i>Aspergillus fumigatus</i> Asexual Development. Applied and Environmental Microbiology, 2020, 86, .	3.1	20
21	Biosynthesis of β-(1→5)-Galactofuranosyl Chains of Fungal-Type and <i>O</i> -Mannose-Type Galactomannans within the Invasive Pathogen Aspergillus fumigatus. MSphere, 2020, 5, .	2.9	13
22	Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism. Life Science Alliance, 2020, 3, e202000878.	2.8	24
23	Chemical genetic approach using β-rubromycin reveals that a RIO kinase-like protein is involved in morphological development in Phytophthora infestans. Scientific Reports, 2020, 10, 22326.	3.3	6
24	Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Frontiers in Microbiology, 2019, 10, 854.	3.5	52
25	Novel Antifungal Compound Z-705 Specifically Inhibits Protein Kinase C of Filamentous Fungi. Applied and Environmental Microbiology, 2019, 85, .	3.1	11
26	AtrR Is an Essential Determinant of Azole Resistance in Aspergillus fumigatus. MBio, 2019, 10, .	4.1	59
27	A simple method to detect the tandem repeat of the cyp51A promoter in azole-resistant strains of Aspergillus fumigatus. Medical Mycology, 2018, 56, 1042-1044.	0.7	4
28	<i>Aspergillus fumigatus</i> adhesion factors in dormant conidia revealed through comparative phenotypic and transcriptomic analyses. Cellular Microbiology, 2018, 20, e12802.	2.1	29
29	Heterogeneity in Pathogenicity-related Properties and Stress Tolerance in <i>Aspergillus fumigatus</i> Clinical Isolates. Medical Mycology Journal, 2018, 59, E63-E70.	1.4	7
30	Identification of Two Mannosyltransferases Contributing to Biosynthesis of the Fungal-type Galactomannan α-Core-Mannan Structure in Aspergillus fumigatus. Scientific Reports, 2018, 8, 16918.	3.3	20
31	Protein Kinase A and High-Osmolarity Glycerol Response Pathways Cooperatively Control Cell Wall Carbohydrate Mobilization in <i>Aspergillus fumigatus</i> . MBio, 2018, 9, .	4.1	33
32	Current Status of Azole-resistant <i>Aspergillus fumigatus</i> Isolates in East Asia. Medical Mycology Journal, 2018, 59, E71-E76.	1.4	10
33	Non- <i>cyp51A</i> Azole-Resistant <i>Aspergillus fumigatus</i> Isolates with Mutation in HMG-CoA Reductase. Emerging Infectious Diseases, 2018, 24, 1889-1897.	4.3	68
34	Emerging Antifungal Drug Resistance in Aspergillus fumigatus and Among Other Species of Aspergillus. Current Fungal Infection Reports, 2018, 12, 105-111.	2.6	9
35	Elucidation of variability of secondary metabolism in filamentous fungi by comparative genomics. Mycotoxins, 2018, 68, 89-92.	0.2	0
36	Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus. Current Genetics, 2017, 63, 777-789.	1.7	33

#	Article	IF	CITATIONS
37	First clinical isolation report of azole-resistant Aspergillus fumigatus with TR 34 /L98H-type mutation in Japan. Journal of Infection and Chemotherapy, 2017, 23, 579-581.	1.7	21
38	Drug Sensitivity and Resistance Mechanism in Aspergillus Section <i>Nigri</i> Strains from Japan. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	46
39	Genome-wide transcriptome analysis of <i>Aspergillus fumigatus</i> exposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakA ^{HOG1} and MpkC dependent. Cellular Microbiology, 2017, 19, e12681.	2.1	52
40	Global gene expression reveals stress-responsive genes in Aspergillus fumigatus mycelia. BMC Genomics, 2017, 18, 942.	2.8	25
41	Azole-resistant <1>Aspergillus fumigatus 1 Containing a 34-bp Tandem Repeat in <1>cyp51A 1 Promoter is Isolated from the Environment in Japan. Medical Mycology Journal, 2017, 58, E67-E70.	1.4	20
42	Temperature during conidiation affects stress tolerance, pigmentation, and trypacidin accumulation in the conidia of the airborne pathogen Aspergillus fumigatus. PLoS ONE, 2017, 12, e0177050.	2.5	55
43	A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions. PLoS Pathogens, 2017, 13, e1006096.	4.7	104
44	Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi. Frontiers in Microbiology, 2016, 7, 1382.	3.5	153
45	Mitogen activated protein kinases SakA ^{HOG1} and MpkC collaborate for <i>Aspergillus fumigatus</i> virulence. Molecular Microbiology, 2016, 100, 841-859.	2.5	110
46	Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy. BMC Genomics, 2016, 17, 358.	2.8	67
47	Sensitisation of an Azole-Resistant Aspergillus fumigatus Strain containing the Cyp51A-Related Mutation by Deleting the SrbA Gene. Scientific Reports, 2016, 6, 38833.	3.3	20
48	The <i>Aspergillus fumigatus</i> SchA ^{SCH9} kinase modulates SakA ^{HOG1} MAP kinase activity and it is essential for virulence. Molecular Microbiology, 2016, 102, 642-671.	2.5	33
49	PB-10Cytotoxic effect of gliotoxin on human alveolar epithelial cells. Microscopy (Oxford, England), 2016, 65, i28.2-i28.	1.5	1
50	Signaling pathways for stress responses and adaptation in <i>Aspergillus</i> species: stress biology in the post-genomic era. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1667-1680.	1.3	65
51	Multi-azole resistant Aspergillus fumigatus harboring Cyp51A TR46/Y121F/T289A isolated in Japan. Journal of Infection and Chemotherapy, 2016, 22, 577-579.	1.7	40
52	Regulation of genes encoding cellulolytic enzymes by Pal-PacC signaling in Aspergillus nidulans. Applied Microbiology and Biotechnology, 2016, 100, 3621-3635.	3.6	22
53	The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. Eukaryotic Cell, 2015, 14, 728-744.	3.4	66
54	Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3: Genes, Genomes, Genetics, 2015, 5, 1525-1539.	1.8	52

#	Article	IF	CITATIONS
55	<scp>H</scp> igh osmolarity glycerol response <scp>PtcB</scp> phosphatase is important for <scp><i>A</i></scp> <i>spergillus fumigatus</i> virulence. Molecular Microbiology, 2015, 96, 42-54.	2.5	69
56	Mitogen-activated protein kinases MpkA and MpkB independently affect micafungin sensitivity in <i>Aspergillus nidulans</i> . Bioscience, Biotechnology and Biochemistry, 2015, 79, 836-844.	1.3	20
57	The α-oxoamine synthase gene fum8 is involved inÂfumonisin B2 biosynthesis in Aspergillus niger. Mycoscience, 2015, 56, 301-308.	0.8	10
58	Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans. Eukaryotic Cell, 2015, 14, 908-921.	3.4	13
59	Genome sequence comparison of Aspergillus fumigatus strains isolated from patients with pulmonary aspergilloma and chronic necrotizing pulmonary aspergillosis. Medical Mycology, 2015, 53, 353-360.	0.7	60
60	Response and Adaptation to Cell Wall Stress and Osmotic Stress in Aspergillus Species. , 2015, , 199-218.		2
61	The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genetics and Biology, 2014, 73, 138-149.	2.1	80
62	Whole-Genome Comparison of Aspergillus fumigatus Strains Serially Isolated from Patients with Aspergillosis. Journal of Clinical Microbiology, 2014, 52, 4202-4209.	3.9	99
63	<scp>ChIP</scp> â€seq reveals a role for <scp>CrzA</scp> in the <scp><i>A</i></scp> <i>spergillus fumigatus</i> highâ€osmolarity glycerol response (<scp>HOG</scp>) signalling pathway. Molecular Microbiology, 2014, 94, 655-674.	2.5	60
64	Functional Analysis of the α-1,3-Glucan Synthase Genes agsA and agsB in Aspergillus nidulans: AgsB Is the Major α-1,3-Glucan Synthase in This Fungus. PLoS ONE, 2013, 8, e54893.	2.5	95
65	NikA/TcsC Histidine Kinase Is Involved in Conidiation, Hyphal Morphology, and Responses to Osmotic Stress and Antifungal Chemicals in Aspergillus fumigatus. PLoS ONE, 2013, 8, e80881.	2.5	67
66	Genetic transformation of Pseudochoricystis ellipsoidea, an aliphatic hydrocarbon-producing green alga. Journal of General and Applied Microbiology, 2012, 58, 1-10.	0.7	23
67	Stress Tolerance of Conidia in <i>Aspergillus</i> . Journal of the Brewing Society of Japan, 2011, 106, 638-644.	0.3	0
68	Characterization of the conserved phosphorylation site in the Aspergillus nidulans response regulator SrrA. Current Genetics, 2011, 57, 103-114.	1.7	13
69	Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes. Applied Microbiology and Biotechnology, 2010, 87, 1829-1840.	3.6	10
70	Characterization of NikA Histidine Kinase and Two Response Regulators with Special Reference to Osmotic Adaptation and Asexual Development inAspergillus nidulans. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1566-1571.	1.3	28
71	Transcriptional profiling for Aspergillus nidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genetics and Biology, 2009, 46, 868-878.	2.1	87

72 種ã,,ã,,,ã⊷ã•ã,‰åºfãŒã,<ç³,状èŒå^†ç"Ÿåã®ã,1ãf^ãf¬ã,1è€æ€§æ©Ÿæ§<. Kagaku To Seibutsu, 2009, 47, 684-6890.0 0

#	Article	IF	CITATIONS
73	Functional analysis of C2H2 zinc finger transcription factor CrzA involved in calcium signaling in Aspergillus nidulans. Current Genetics, 2008, 54, 325-338.	1.7	71
74	Characterization of bZip-Type Transcription Factor AtfA with Reference to Stress Responses of Conidia of <i>Aspergillus nidulans</i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 2756-2760.	1.3	64
75	The SskA and SrrA Response Regulators Are Implicated in Oxidative Stress Responses of Hyphae and Asexual Spores in the Phosphorelay Signaling Network of <i>Aspergillus nidulans</i> . Bioscience, Biotechnology and Biochemistry, 2007, 71, 1003-1014.	1.3	75
76	Characterization of the bZip-Type Transcription Factor NapA with Reference to Oxidative Stress Response inAspergillus nidulans. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1800-1803.	1.3	51
77	Characterization of the NikA Histidine Kinase Implicated in the Phosphorelay Signal Transduction ofAspergillus nidulans, with Special Reference to Fungicide Responses. Bioscience, Biotechnology and Biochemistry, 2007, 71, 844-847.	1.3	73
78	Novel Reporter Gene Expression Systems for Monitoring Activation of theAspergillus nidulansHOG Pathway. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1724-1730.	1.3	23
79	Genome-wide comparison of the His-to-Asp phosphorelay signaling components of three symbiotic genera of Rhizobia. DNA Research, 2004, 11, 57-65.	3.4	16
80	A Genome-Wide View of theEscherichia coliBasS–BasR Two-component System Implicated in Iron-responses. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1758-1767.	1.3	83
81	Genome-Wide Analyses Revealing a Signaling Network of the RcsC-YojN-RcsB Phosphorelay System in Escherichia coli. Journal of Bacteriology, 2003, 185, 5735-5746.	2.2	154