Julia Ines Fariña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7842075/publications.pdf

Version: 2024-02-01

623734 713466 23 477 14 21 g-index citations h-index papers 23 23 23 559 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring Agaricomycetes from the Paranaense rainforest (Misiones, Argentina) as an unconventional source of fibrinolytic enzymes. Mycologia, 2022, , $1-12$.	1.9	O
2	Cost-effective optimized scleroglucan production by Sclerotium rolfsii ATCC 201126 at bioreactor scale. A quantity-quality assessment. Carbohydrate Polymers, 2021, 260, 117505.	10.2	6
3	Paraboeremia yungensis sp. nov., a new fungal species isolated from Las Yungas, South America, with promising tyrosinase production potential. Phytotaxa, 2021, 528, 191-201.	0.3	1
4	Scleroglucan Production by Sclerotium rolfsii ATCC 201126 from Amylaceous and Sugarcane Molasses-Based Media: Promising Insights for Sustainable and Ecofriendly Scaling-Up. Journal of Polymers and the Environment, 2019, 27, 2804-2818.	5.0	13
5	Microbial production of scleroglucan and downstream processing. Frontiers in Microbiology, 2015, 6, 1106.	3.5	62
6	Decolorization of Kraft liquor effluents and biochemical characterization of laccases from Phlebia brevispora BAFC 633. International Biodeterioration and Biodegradation, 2015, 104, 443-451.	3.9	21
7	CHARACTERIZATION OF THE OXIDATIVE ENZYME POTENTIAL IN WILD WHITE ROT FUNGI FROM MISIONES (ARGENTINA). Acta Biologica Colombiana, 2014, 20, 47-56.	0.4	7
8	Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia brevispora BAFC 633. World Journal of Microbiology and Biotechnology, 2014, 30, 2251-2262.	3.6	9
9	Scleroglucan compatibility with thickeners, alcohols and polyalcohols and downstream processing implications. Carbohydrate Polymers, 2013, 92, 1107-1115.	10.2	13
10	Effects of thermal, alkaline and ultrasonic treatments on scleroglucan stability and flow behavior. Carbohydrate Polymers, 2013, 94, 496-504.	10.2	30
11	Synergistic antifungal activity of statin–azole associations as witnessed by Saccharomyces cerevisiae- and Candida utilis-bioassays and ergosterol quantification. Revista Iberoamericana De Micologia, 2013, 30, 31-38.	0.9	42
12	Influence of Culture Conditions on Laccase Production, Growth, and Isoenzymes Patterns in Native White Rot Fungi from the Misiones Rainforest (Argentina). BioResources, 2013, 8, .	1.0	14
13	Removal Efficiency of Cr ⁶⁺ by Indigenous <i>Pichia</i> sp. Isolated from Textile Factory Effluent. Scientific World Journal, The, 2012, 2012, 1-6.	2.1	13
14	Cr(VI) reduction by cell-free extracts of Pichia jadinii and Pichia anomala isolated from textile-dye factory effluents. International Biodeterioration and Biodegradation, 2012, 71, 80-85.	3.9	41
15	Unraveling the decolourizing ability of yeast isolates from dye-polluted and virgin environments: an ecological and taxonomical overview. Antonie Van Leeuwenhoek, 2011, 99, 443-456.	1.7	24
16	Investigation on the film-forming properties of lab fermenter scale produced scleroglucans from Sclerotium rolfsii ATCC 201126. Carbohydrate Polymers, 2011, 86, 45-50.	10.2	3
17	Critical Influence of Culture Medium and Cr(III) Quantification Protocols on the Interpretation of Cr(VI) Bioremediation by Environmental Fungal Isolates. Water, Air, and Soil Pollution, 2010, 206, 283-293.	2.4	18
18	The Significance of Inoculum Standardization and Cell Density on the Cr(VI) Removal by Environmental Yeast Isolates. Water, Air, and Soil Pollution, 2010, 212, 275-279.	2.4	17

#	Article	IF	CITATION
19	A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucumán, Argentina). World Journal of Microbiology and Biotechnology, 2010, 26, 55-62.	3.6	23
20	Structural stability of <i> Sclerotium rolfsii < /i > ATCC 201126 \hat{l}^2-glucan with fermentation time: a chemical, infrared spectroscopic and enzymatic approach. Journal of Applied Microbiology, 2009, 106, 221-232.</i>	3.1	18
21	Phenotypical and genetic characterization of Trichosporon sp. HP-2023. A yeast isolate from Las Yungas rainforest (Tucumán, Argentina) with dye-decolorizing ability. Antonie Van Leeuwenhoek, 2008, 94, 233-244.	1.7	25
22	Sclerotium rolfsii scleroglucan: The promising behavior of a natural polysaccharide as a drug delivery vehicle, suspension stabilizer and emulsifier. International Journal of Biological Macromolecules, 2007, 41, 314-323.	7.5	32
23	Dye-decolorizing activity in isolated yeasts from the ecoregion of Las Yungas (Tucumán, Argentina). Enzyme and Microbial Technology, 2007, 40, 1503-1511.	3.2	45