Michael E Greenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7841463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network. Nature, 2021, 590, 115-121.	13.7	70
2	Activity-dependent regulome of human GABAergic neurons reveals new patterns of gene regulation and neurological disease heritability. Nature Neuroscience, 2021, 24, 437-448.	7.1	33
3	Proteomic analysis identifies the E3 ubiquitin ligase Pdzrn3 as a regulatory target of Wnt5a-Ror signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
4	NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron, 2021, 109, 3268-3282.e6.	3.8	46
5	Rewiring of human neurodevelopmental gene regulatory programs by human accelerated regions. Neuron, 2021, 109, 3239-3251.e7.	3.8	91
6	Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nature Neuroscience, 2021, 24, 204-213.	7.1	76
7	MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes. Molecular Cell, 2020, 77, 294-309.e9.	4.5	72
8	Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism. Neuron, 2020, 108, 451-468.e9.	3.8	106
9	Homozygous deletions implicate non-coding epigenetic marks in Autism spectrum disorder. Scientific Reports, 2020, 10, 14045.	1.6	12
10	Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11744-11752.	3.3	47
11	Neurons that regulate mouse torpor. Nature, 2020, 583, 115-121.	13.7	142
12	Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell, 2020, 181, 1307-1328.e15.	13.5	243
13	An Activity-Mediated Transition in Transcription in Early Postnatal Neurons. Neuron, 2020, 107, 874-890.e8.	3.8	41
14	Mapping the <i>cis</i> -regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9001-9012.	3.3	72
15	Mechanisms of Wnt5aâ€Ror Signaling in Development and Disease. FASEB Journal, 2020, 34, 1-1.	0.2	0
16	Chromatin Environment and Cellular Context Specify Compensatory Activity of Paralogous MEF2 Transcription Factors. Cell Reports, 2019, 29, 2001-2015.e5.	2.9	19
17	A Late Phase of Long-Term Synaptic Depression in Cerebellar Purkinje Cells Requires Activation of MEF2. Cell Reports, 2019, 26, 1089-1097.e3.	2.9	12
18	Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nature Neuroscience, 2019, 22, 1075-1088.	7.1	207

MICHAEL E GREENBERG

#	Article	IF	CITATIONS
19	Loss of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment. Neuron, 2019, 103, 250-265.e8.	3.8	177
20	ARNT2 Tunes Activity-Dependent Gene Expression through NCoR2-Mediated Repression and NPAS4-Mediated Activation. Neuron, 2019, 102, 390-406.e9.	3.8	35
21	A scalable platform for the development of cell-type-specific viral drivers. ELife, 2019, 8, .	2.8	67
22	Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1051-E1060.	3.3	66
23	Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genetics in Medicine, 2018, 20, 202-213.	1.1	47
24	Lineage divergence of activity-driven transcription and evolution of cognitive ability. Nature Reviews Neuroscience, 2018, 19, 9-15.	4.9	33
25	Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nature Neuroscience, 2018, 21, 120-129.	7.1	394
26	Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nature Neuroscience, 2018, 21, 1670-1679.	7.1	92
27	Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron, 2018, 100, 330-348.	3.8	408
28	Visual Experience-Dependent Expression of Fn14 Is Required for Retinogeniculate Refinement. Neuron, 2018, 99, 525-539.e10.	3.8	39
29	Early-Life Gene Expression in Neurons Modulates Lasting Epigenetic States. Cell, 2017, 171, 1151-1164.e16.	13.5	167
30	AP-1 Transcription Factors and the BAF Complex Mediate Signal-Dependent Enhancer Selection. Molecular Cell, 2017, 68, 1067-1082.e12.	4.5	328
31	Kinesin superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in vertebrates. ELife, 2017, 6, .	2.8	33
32	EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure. Developmental Neurobiology, 2016, 76, 405-420.	1.5	18
33	DNA methylation in the gene body influences MeCP2-mediated gene repression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15114-15119.	3.3	100
34	Evolution of Osteocrin as an activity-regulated factor in the primate brain. Nature, 2016, 539, 242-247.	13.7	120
35	Unidirectional Eph/ephrin signaling creates a cortical actomyosin differential to drive cell segregation. Journal of Cell Biology, 2016, 215, 217-229.	2.3	41
36	Catching the Brain in the Act. Cell, 2016, 165, 1570-1571.	13.5	0

3

#	Article	IF	CITATIONS
37	Genomic mapping and cellular expression of human CPG2 transcripts in the SYNE1 gene. Molecular and Cellular Neurosciences, 2016, 71, 46-55.	1.0	6
38	Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature, 2015, 522, 89-93.	13.7	521
39	A Shortcut to Activity-Dependent Transcription. Cell, 2015, 161, 1496-1498.	13.5	9
40	The Eya1 Phosphatase Promotes Shh Signaling during Hindbrain Development and Oncogenesis. Developmental Cell, 2015, 33, 22-35.	3.1	35
41	Reading the unique DNA methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6800-6806.	3.3	205
42	MEF2D Drives Photoreceptor Development through a Genome-wide Competition for Tissue-Specific Enhancers. Neuron, 2015, 86, 247-263.	3.8	72
43	Genome-wide identification and characterization of functional neuronal activity–dependent enhancers. Nature Neuroscience, 2014, 17, 1330-1339.	7.1	244
44	Npas4 Regulates Excitatory-Inhibitory Balance within Neural Circuits through Cell-Type-Specific Gene Programs. Cell, 2014, 157, 1216-1229.	13.5	315
45	The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature, 2013, 503, 121-125.	13.7	246
46	Activity-dependent neuronal signalling and autism spectrum disorder. Nature, 2013, 493, 327-337.	13.7	549
47	Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature, 2013, 499, 341-345.	13.7	206
48	Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nature Neuroscience, 2013, 16, 898-902.	7.1	317
49	A chemical genetic approach reveals distinct EphB signaling mechanisms during brain development. Nature Neuroscience, 2012, 15, 1645-1654.	7.1	33
50	Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron, 2012, 74, 691-705.	3.8	3,040
51	Neuronal Activity-Regulated Gene Transcription in Synapse Development and Cognitive Function. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005744-a005744.	2.3	426
52	Widespread transcription at neuronal activity-regulated enhancers. Nature, 2010, 465, 182-187.	13.7	2,120
53	Cilia and Hedgehog Signaling in the Mouse Embryo. , 2010, 102, 103-115.		9

Protein Transport in and out of the Endoplasmic Reticulum. , 2010, 102, 51-72.

0

MICHAEL E GREENBERG

#	Article	IF	CITATIONS
55	Tracking the Road from Inflammation to Cancer: the Critical Role of lκB Kinase (IKK). , 2010, 102, 133-151.		8
56	Signaling Networks that Control Synapse Development and Cognitive Function. , 2010, 102, 73-102.		1
57	Basal Bodies: Their Roles in Generating Asymmetry. , 2010, 102, 17-50.		1
58	New Insights in the Biology of BDNF Synthesis and Release: Implications in CNS Function. Journal of Neuroscience, 2009, 29, 12764-12767.	1.7	511
59	Activity-dependent regulation of inhibitory synapse development by Npas4. Nature, 2008, 455, 1198-1204.	13.7	518
60	Identification of Newly Transcribed RNA. Current Protocols in Molecular Biology, 2007, 78, Unit 4.10.	2.9	50
61	Derepression of BDNF Transcription Involves Calcium-Dependent Phosphorylation of MeCP2. Science, 2003, 302, 885-889.	6.0	1,138
62	CREB Transcriptional Activity in Neurons Is Regulated by Multiple, Calcium-Specific Phosphorylation Events. Neuron, 2002, 34, 221-233.	3.8	261
63	Induction of a Nerve Growth Factor-Sensitive Kinase that Phosphorylates the DNA-Binding Domain of the Orphan Nuclear Receptor NGFI-B. Journal of Neurochemistry, 2002, 65, 1780-1788.	2.1	16
64	The E2F1–3 transcription factors are essential for cellular proliferation. Nature, 2001, 414, 457-462.	13.7	545
65	Neuronal Activity-Dependent Cell Survival Mediated by Transcription Factor MEF2. Science, 1999, 286, 785-790.	6.0	485
66	CREB: A Stimulus-Induced Transcription Factor Activated by A Diverse Array of Extracellular Signals. Annual Review of Biochemistry, 1999, 68, 821-861.	5.0	1,940
67	Ca2+ channel-regulated neuronal gene expression. Journal of Neurobiology, 1998, 37, 171-189.	3.7	183
68	Calcium Phosphate Transfection of DNA into Neurons in Primary Culture. Current Protocols in Neuroscience, 1998, 3, 3.11.1-3.11.6.	2.6	25
69	Ca2+ channel-regulated neuronal gene expression. , 1998, 37, 171.		6
70	Neurotrophin Regulation of Gene Expression. Canadian Journal of Neurological Sciences, 1997, 24, 272-283.	0.3	32
71	Spatial features of calcium-regulated gene expression. BioEssays, 1997, 19, 657-660.	1.2	36
72	Calcium regulation of gene expression in neuronal cells. Journal of Neurobiology, 1994, 25, 294-303.	3.7	307

#	Article	IF	CITATIONS
73	Identification of Newly Transcribed RNA. Current Protocols in Molecular Biology, 1994, 26, 4.10.1.	2.9	3
74	Regulation of Cyclic AMP Response Element-Binding Protein (CREB) Phosphorylation by Acute and Chronic Morphine in the Rat Locus Coeruleus. Journal of Neurochemistry, 1992, 58, 1168-1171.	2.1	186
75	Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature, 1984, 311, 433-438.	13.7	3,227
76	Active Members. , 0, , 179-189.		0
77	Former Officers of the Harvey Society. , 0, , 153-168.		0