
Jinshan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7841446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrapure deep-blue aggregation-induced emission and thermally activated delayed fluorescence emitters for efficient OLEDs with CIE _{<i>y</i>} < 0.1 and low efficiency roll-offs. Journal of Materials Chemistry C, 2022, 10, 3163-3171.	2.7	22
2	Machine learning with quantum chemistry descriptors: predicting the solubility of small-molecule optoelectronic materials for organic solar cells. Journal of Materials Chemistry A, 2022, 10, 15999-16006.	5.2	5
3	Replacing the cyano (–Cî€,N) group to design environmentally friendly fused-ring electron acceptors. Physical Chemistry Chemical Physics, 2021, 23, 18085-18092.	1.3	5
4	Polypyrrole Nanotube Sponge Host for Stable Lithium-Metal Batteries under Lean Electrolyte Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2543-2551.	3.2	11
5	V ₂ CT _{<i>x</i>} MXene Artificial Solid Electrolyte Interphases toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9961-9969.	3.2	13
6	Ultralight PEDOT Functionalized Separators toward Highâ€Performance Lithium Metal Anodes. ChemElectroChem, 2021, 8, 2836-2845.	1.7	8
7	Research Progress in the Multilayer Hydrogels. Gels, 2021, 7, 172.	2.1	10
8	Effective Design Strategy for Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Emitters Achieving 18% External Quantum Efficiency Pure-Blue OLEDs with Extremely Low Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 57713-57724.	4.0	30
9	Biocompatible and biodegradable chitosan/sodium polyacrylate polyelectrolyte complex hydrogels with smart responsiveness. International Journal of Biological Macromolecules, 2020, 155, 1245-1251.	3.6	26
10	Elucidating the Key Role of the Cyano (â^C≡N) Group to Construct Environmentally Friendly Fused-Ring Electron Acceptors. Journal of Physical Chemistry C, 2020, 124, 23059-23068.	1.5	28
11	Functionalizing triptycene to create 3D high-performance non-fullerene acceptors. RSC Advances, 2020, 10, 12004-12012.	1.7	3
12	Non-fullerene electron acceptors constructed by four strong electron-withdrawing end groups: Potential to improve the photoelectric performance of organic solar cells by theoretical investigations. Dyes and Pigments, 2020, 181, 108542.	2.0	7
13	Quad-rotor-shaped non-fullerene electron acceptor materials with potential to enhance the photoelectric performance of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18150-18157.	5.2	23
14	Solution-processed aggregation-induced delayed fluorescence (AIDF) emitters based on strong Ï€-accepting triazine cores for highly efficient nondoped OLEDs with low efficiency roll-off. Organic Electronics, 2019, 65, 170-178.	1.4	30
15	Not All Bis[2-(4,6-difluorophenyl)pyridyl- <i>N</i> , <i>C</i> 2′]iridium(III) Picolinate (FIrpic) Isomers Are Unsuitable for Developing Long-Lifetime Blue Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 227-232.	1.5	6
16	Nanocomposite of Ni–Tiâ€layered double hydroxide and graphene for enhanced visâ€light photocatalysis. Micro and Nano Letters, 2018, 13, 127-130.	0.6	3
17	Colorimetric Detection of Hg ²⁺ Based on Enhancement of Peroxidaseâ€like Activity of Chitosan old Nanoparticles. Bulletin of the Korean Chemical Society, 2018, 39, 625-630.	1.0	28
18	Elucidating the key role of fluorine in improving the charge mobility of electron acceptors for non-fullerene organic solar cells by multiscale simulations. Journal of Materials Chemistry C, 2018, 6, 4912-4918.	2.7	35

JINSHAN WANG

#	Article	IF	CITATIONS
19	Construction of novel cellulose/chitosan composite hydrogels and films and their applications. Cellulose, 2018, 25, 1987-1996.	2.4	45
20	N-doped CsTi2NbO7@g-C3N4 core-shell nanobelts with enhanced visible light photocatalytic activity. Materials Letters, 2018, 217, 235-238.	1.3	14
21	Ge-based bipolar small molecular host for highly efficient blue OLEDs: multiscale simulation of charge transport. Journal of Materials Chemistry C, 2018, 6, 6146-6152.	2.7	23
22	Solution-processed aggregation-induced emission molecule for highly efficient non-doped OLEDs with negligible efficiency roll-off. Materials Letters, 2018, 222, 66-69.	1.3	6
23	Larger <i>V</i> _H (Hole Distribution Volume)/ <i>V</i> _M (Molecular Volume) Induced Higher Charge Mobility of Group IVA Element-Based Host Materials for Potentially Highly Efficient Blue OLEDs. Journal of Physical Chemistry C, 2018, 122, 22273-22279.	1.5	11
24	Highly efficient blue, orange and red PhOLEDs with low roll-off of efficiency using a carbazole dendritic thermally activated delayed fluorescence (TADF) material as host. Materials Letters, 2018, 233, 149-152.	1.3	9
25	Dendritic Self-Host Phosphorescent Iridium Materials for High-Efficiency Organic Light-Emitting Diodes. Current Organic Chemistry, 2018, 22, 590-599.	0.9	2
26	High triplet, bipolar polymeric hosts for highly efficient solution-processed blue phosphorescent polymer light-emitting diodes. Organic Electronics, 2017, 43, 1-8.	1.4	8
27	Self-host blue-emitting iridium dendrimer for solution-processed non-doped phosphorescent organic light-emitting diodes with flat efficiency roll-off and less phase segregation. Organic Electronics, 2017, 45, 49-56.	1.4	12
28	Carbazole-dendrite-encapsulated electron acceptor core for constructing thermally activated delayed fluorescence emitters used in nondoped solution-processed organic light-emitting diodes. Organic Electronics, 2017, 48, 262-270.	1.4	20
29	Chitosan–gold nanoparticles as peroxidase mimic and their application in glucose detection in serum. RSC Advances, 2017, 7, 44463-44469.	1.7	74
30	A novel blue fluorescent polymer for solution-processed fluorescent–phosphorescent hybrid WOLEDs. Journal of Materials Chemistry C, 2015, 3, 2856-2864.	2.7	29
31	An air-stable microwire radial heterojunction with high photoconductivity based on a new building block. Journal of Materials Chemistry C, 2015, 3, 5933-5939.	2.7	14
32	Design, synthesis and characterization of a new blue phosphorescent Ir complex. Journal of Materials Chemistry C, 2015, 3, 8675-8683.	2.7	14
33	Solution processed blue phosphorescent organic light emitting diodes using a Ge-based small molecular host. Journal of Materials Chemistry C, 2015, 3, 5017-5025.	2.7	16
34	Solution-processed oxadiazole-based electron-transporting layer for white organic light-emitting diodes. RSC Advances, 2015, 5, 36568-36574.	1.7	14
35	Organic–inorganic hybrid nanoparticles with enhanced fluorescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 38-44.	2.3	9
36	Fluorescence Resonance Energy Transfer in a Binary Organic Nanoparticle System and Its Application. ACS Applied Materials & Interfaces, 2015, 7, 8243-8250.	4.0	30

JINSHAN WANG

#	ARTICLE	IF	CITATIONS
37	Improved efficiency in polymer light-emitting diodes using metal-enhanced fluorescence. Applied Physics Letters, 2014, 105, .	1.5	25
38	Solution-Processed White Organic Light-Emitting Diodes with Enhanced Efficiency by Using Quaternary Ammonium Salt Doped Conjugated Polyelectrolyte. ACS Applied Materials & Interfaces, 2014, 6, 8631-8638.	4.0	11
39	Obtaining highly efficient single-emissive-layer orange and two-element white organic light-emitting diodes by the solution process. Journal of Materials Chemistry C, 2014, 2, 5036.	2.7	21
40	Fluorescent Organic Nanoparticles with Enhanced Fluorescence by Self-Aggregation and their Application to Cellular Imaging. ACS Applied Materials & Interfaces, 2014, 6, 18337-18343.	4.0	56
41	Synthesis, characterization, and application of a novel orange–red iridium(III) phosphor for solution-processed single emissive layer white organic light-emitting diodes. Synthetic Metals, 2014, 197, 90-98.	2.1	8
42	Fluorescent Organic Nanoparticles Based on Branched Small Molecule: Preparation and Ion Detection in Lithium-Ion Battery. ACS Applied Materials & amp; Interfaces, 2013, 5, 3392-3400.	4.0	37
43	Low-Temperature, Solution-Processed Hole Selective Layers for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 1100-1107.	4.0	43
44	Exploring the application of conjugated polymer nanoparticles in chemical sensing: detection of free radicals by a synergy between fluorescent nanoparticles of two conjugated polymers. Journal of	6.7	21

Materials Chemistry, 2011, 21, 18696.