
Waleed Alahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7841308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples. Talanta, 2018, 190, 78-84.	2.9	77
2	A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium(<scp>iii</scp>). Analytical Methods, 2016, 8, 5414-5420.	1.3	61
3	Microfluidic paper-based analytical devices with instrument-free detection and miniaturized portable detectors. Applied Spectroscopy Reviews, 2019, 54, 117-141.	3.4	61
4	Determination of Cr(III) and Cr(VI) in water by dual-gel electromembrane extraction and a microfluidic paper-based device. Environmental Chemistry Letters, 2020, 18, 187-196.	8.3	46
5	Simultaneous determination of benzoic acid, sorbic acid, and propionic acid in fermented food by headspace solid-phase microextraction followed by GC-FID. Food Chemistry, 2020, 329, 127161.	4.2	45
6	Chromium speciation using paper-based analytical devices by direct determination and with electromembrane microextraction. Analytica Chimica Acta, 2019, 1085, 98-106.	2.6	44
7	Development of flow systems incorporating membraneless vaporization units and flow-through contactless conductivity detector for determination of dissolved ammonium and sulfide in canal water. Talanta, 2018, 177, 34-40.	2.9	30
8	Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical analysis: A review. Biosensors and Bioelectronics, 2021, 194, 113574.	5.3	26
9	Combining graphite with hollow-fiber liquid-phase microextraction for improving the extraction efficiency of relatively polar organic compounds. Talanta, 2020, 215, 120902.	2.9	22
10	Gel electromembrane microextraction followed by ion chromatography for direct determination of iodine in supplements and fortified food samples: Green chemistry for food analysis. Food Chemistry, 2021, 358, 129857.	4.2	22
11	An overview of the recent developments of microfluidic paper-based analytical devices for the detection of chromium species. Microchemical Journal, 2021, 170, 106699.	2.3	21
12	Green analytical flow method for the determination of total sulfite in wine using membraneless gas–liquid separation with contactless conductivity detection. Analytical Methods, 2017, 9, 6107-6116.	1.3	18
13	Isolation of Chromium(VI) from Aqueous Solution by Electromembrane Extraction. Analytical Letters, 2018, 51, 983-997.	1.0	18
14	Evaluation of complexing agents in the gel electro-membrane extraction: An efficient approach for the quantification of zinc (II) ions in water samples. Talanta, 2022, 238, 123031.	2.9	16
15	Recent Developments and Applications of Microfluidic Paper-Based Analytical Devices for the Detection of Biological and Chemical Hazards in Foods: A Critical Review. Critical Reviews in Analytical Chemistry, 2023, 53, 233-252.	1.8	16
16	Electrocolorimetric gel-based sensing approach for simultaneous extraction, preconcentration, and detection of iodide and chromium (VI) ions. Talanta, 2021, 235, 122715.	2.9	10
17	Application of electrocolorimetric extraction for the determination of Ni(II) ions in chocolate samples: A green methodology for food analysis. Food Chemistry, 2022, 382, 132344.	4.2	10
18	Selective solid-phase extraction of atrazine from agricultural environmental water samples using high permeability nanoporous carbon derived from melamine-based polybenzoxazine followed by HPLC-UV. International Journal of Environmental Analytical Chemistry, 0, , 1-15.	1.8	6

#	Article	IF	CITATIONS
19	Development of a Sample Treatment Method for a Flow Injection Determination of Iodine in Eggs: A Comparison Study. Analytical Sciences, 2020, 36, 491-495.	0.8	4
20	Recent Developments and Applications of Microfluidic Paper-Based Analytical Devices for the Detection of Biological and Chemical Hazards in Foods: A Critical Review. Critical Reviews in Analytical Chemistry, 2021, , 1-20.	1.8	2
21	Chemiluminescence paper-based analytical devices. , 2022, , 169-182.		1
22	Membrane-based microextraction systems for preconcentration of chromium species: a short review. International Journal of Environmental Analytical Chemistry, 2023, 103, 9099-9116.	1.8	1