
Shabnam Peyvandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7841149/publications.pdf Version: 2024-02-01

SHARNAM DEVVANDI

#	Article	IF	CITATIONS
1	The Effect of Size and Asymmetry at Birth on Brain Injury and Neurodevelopmental Outcomes in Congenital Heart Disease. Pediatric Cardiology, 2022, 43, 868-877.	0.6	7
2	Neonatal brain injury influences structural connectivity and childhood functional outcomes. PLoS ONE, 2022, 17, e0262310.	1.1	18
3	NAFTNet retrospective report on the treatment of anti-Ro/SSA mediated fetal heart block with dexamethasone. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 9263-9270.	0.7	6
4	Addressing Social Determinants of Health and Mitigating Health Disparities Across the Lifespan in Congenital Heart Disease: A Scientific Statement From the American Heart Association. Journal of the American Heart Association, 2022, 11, e025358.	1.6	43
5	Fetal brain growth and risk of postnatal white matter injury in critical congenital heart disease. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 1007-1014.e1.	0.4	24
6	Fetal cerebrovascular response to maternal hyperoxygenation in congenital heart disease: effect of cardiac physiology. Ultrasound in Obstetrics and Gynecology, 2021, 57, 769-775.	0.9	17
7	Fetal cerebrovascular impedance is reduced in left congenital diaphragmatic hernia. Ultrasound in Obstetrics and Gynecology, 2021, 57, 386-391.	0.9	9
8	Association between Z-score for birth weight and postoperative outcomes in neonates and infants with congenital heart disease. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 1838-1847.e4.	0.4	16
9	Fetal Cerebral Oxygenation Is Impaired in Congenital Heart Disease and Shows Variable Response to Maternal Hyperoxia. Journal of the American Heart Association, 2021, 10, e018777.	1.6	23
10	Impact of Socioeconomic Status, Race and Ethnicity, and Geography on Prenatal Detection of Hypoplastic Left Heart Syndrome and Transposition of the Great Arteries. Circulation, 2021, 143, 2049-2060.	1.6	54
11	Contemporary Outcomes in Tetralogy of Fallot With Absent Pulmonary Valve After Fetal Diagnosis. Journal of the American Heart Association, 2021, 10, e019713.	1.6	15
12	Mortality and Major Neonatal Morbidity in Preterm Infants with Serious Congenital Heart Disease. Journal of Pediatrics, 2021, 239, 110-116.e3.	0.9	13
13	Multiâ€Institutional Practiceâ€Patterns in Fetal Congenital Heart Disease Following Implementation of a Standardized Clinical Assessment and Management Plan. Journal of the American Heart Association, 2021, 10, e021598.	1.6	5
14	Giant Neonatal Pulmonary Arteriovenous Malformation: An Imaging and Management Challenge. Case, 2020, 4, 526-530.	0.1	3
15	Decisions, Decisions, Decisions…. Circulation: Cardiovascular Quality and Outcomes, 2020, 13, e006636.	0.9	0
16	Environmental and Socioeconomic Factors Influence the Liveâ€Born Incidence of Congenital Heart Disease: A Populationâ€Based Study in California. Journal of the American Heart Association, 2020, 9, e015255.	1.6	44
17	White matter injury in term neonates with congenital heart diseases: Topology & comparison with preterm newborns. NeuroImage, 2019, 185, 742-749.	2.1	60
18	The neonatal brain in critical congenital heart disease: Insights and future directions. Neurolmage, 2019, 185, 776-782.	2.1	100

SHABNAM PEYVANDI

#	Article	IF	CITATIONS
19	Impact of Perioperative Brain Injury and Development on Feeding Modality in Infants With Single Ventricle Heart Disease. Journal of the American Heart Association, 2019, 8, e012291.	1.6	16
20	Commentary: Is the brain spared when the heart is broken?. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 1994-1995.	0.4	0
21	Neonatal Brain Injury and Timing of Neurodevelopmental Assessment in Patients With Congenital Heart Disease. Journal of the American College of Cardiology, 2018, 71, 1986-1996.	1.2	83
22	Resolving the Fontan paradox: Addressing socioeconomic and racial disparities in patients with a single ventricle. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1727-1731.	0.4	14
23	The association between cardiac physiology, acquired brain injury, and postnatal brain growth in critical congenital heart disease. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 291-300.e3.	0.4	61
24	Socioeconomic Mediators of Racial and Ethnic Disparities in Congenital Heart Disease Outcomes: A Populationâ€Based Study in California. Journal of the American Heart Association, 2018, 7, e010342.	1.6	101
25	Effect of Fetal Growth on 1‥ear Mortality in Neonates With Critical Congenital Heart Disease. Journal of the American Heart Association, 2018, 7, e009693.	1.6	15
26	Circulatory Changes and Cerebral Blood Flow and Oxygenation During Transition in Newborns With Congenital Heart Disease. Seminars in Pediatric Neurology, 2018, 28, 38-47.	1.0	21
27	Measuring Up Before Birth. Circulation: Cardiovascular Imaging, 2018, 11, e008008.	1.3	1
28	Timing and Mode of Delivery in Prenatally Diagnosed Congenital Heart Disease- an Analysis of Practices within the University of California Fetal Consortium (UCfC). Pediatric Cardiology, 2017, 38, 588-595.	0.6	33
29	Revisiting the utility of technical performance scores following tetralogy of Fallot repair. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 585-595.e3.	0.4	8
30	Epidemiology of Live Born Infants with Nonimmune Hydrops Fetalis—Insights from a Population-Based Dataset. Journal of Pediatrics, 2017, 187, 182-188.e3.	0.9	38
31	Coarctation Index Predicts Recurrent Aortic Arch Obstruction Following Surgical Repair of Coarctation of the Aorta in Infants. Pediatric Cardiology, 2017, 38, 1241-1246.	0.6	12
32	Right Ventricular Systolic-to-Diastolic Time Index: Hypoplastic Left Heart Fetuses Differ Significantly from Normal Fetuses. Journal of the American Society of Echocardiography, 2016, 29, 143-149.	1.2	15
33	Association of Prenatal Diagnosis of Critical Congenital Heart Disease With Postnatal Brain Development and the Risk of Brain Injury. JAMA Pediatrics, 2016, 170, e154450.	3.3	117
34	Pulmonary Atresia With an Intact Ventricular Septum in the Setting of Dâ€Transposition of the Great Arteries With a Hypoplastic Left Ventricle: Fetal Diagnosis. Journal of Ultrasound in Medicine, 2015, 34, 2313-2315.	0.8	2
35	Twinâ€reversed arterial perfusion sequence associated with decreased fetal cerebral vascular impedance. Ultrasound in Obstetrics and Gynecology, 2015, 45, 447-451.	0.9	10
36	Preconceptual Folic Acid Use and Recurrence Risk Counseling for Congenital Heart Disease. Congenital Heart Disease, 2015, 10, 219-225.	0.0	3

#	Article	IF	CITATIONS
37	The many faces of hydrops. Journal of Pediatric Surgery, 2015, 50, 50-54.	0.8	48
38	Hybrid versus Norwood: "Fifty shades of grey― Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 456-457.	0.4	3
39	Risk of congenital heart disease in relatives of probands with conotruncal cardiac defects: An evaluation of 1,620 families. American Journal of Medical Genetics, Part A, 2014, 164, 1490-1495.	0.7	31
40	Pulmonary artery blood flow patterns in fetuses with pulmonary outflow tract obstruction. Ultrasound in Obstetrics and Gynecology, 2014, 43, 297-302.	0.9	8
41	22q11.2 Deletions in Patients with Conotruncal Defects: Data from 1,610 Consecutive Cases. Pediatric Cardiology, 2013, 34, 1687-1694.	0.6	88
42	OC05.04: Aortic arch anatomy helps identify the fetus at-risk for a chromosome 22q11.2 deletion. Ultrasound in Obstetrics and Gynecology, 2011, 38, 10-10.	0.9	0