
Gloria Rubiales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7841113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A patent review of topoisomerase I inhibitors (2016–present). Expert Opinion on Therapeutic Patents, 2021, 31, 473-508.	2.4	19
2	Fused chromeno and quinolino[1,8]naphthyridines: Synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents. Bioorganic and Medicinal Chemistry, 2021, 40, 116177.	1.4	11
3	Synthetic Strategies, Reactivity and Applications of 1,5-Naphthyridines. Molecules, 2020, 25, 3252.	1.7	7
4	Fused 1,5-Naphthyridines: Synthetic Tools and Applications. Molecules, 2020, 25, 3508.	1.7	13
5	Novel phosphine sulphide gold(<scp>i</scp>) complexes: topoisomerase I inhibitors and antiproliferative agents. Dalton Transactions, 2020, 49, 7852-7861.	1.6	9
6	Synthesis of novel hybrid quinolino[4,3-b][1,5]naphthyridines and quinolino[4,3-b][1,5]naphthyridin-6(5H)-one derivatives and biological evaluation as topoisomerase I inhibitors and antiproliferatives. European Journal of Medicinal Chemistry, 2020, 195, 112292.	2.6	21
7	Synthesis of Heterocyclic Fused [1,5]naphthyridines by Intramolecular HDA Reactions. Proceedings (mdpi), 2019, 22, 93.	0.2	0
8	Straightforward synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents of hybrid Chromeno[4,3-b][1,5]Naphthyridines and Chromeno[4,3-b][1,5]Naphthyridin-6-ones. European Journal of Medicinal Chemistry, 2019, 178, 752-766.	2.6	23
9	Reaction of phosphinyl nitrosoalkenes with electron-rich heterocycles. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 545-549.	0.8	2
10	Antileishmanial activity of new hybrid tetrahydroquinoline and quinoline derivatives with phosphorus substituents. European Journal of Medicinal Chemistry, 2019, 162, 18-31.	2.6	36
11	Novel topoisomerase I inhibitors. Syntheses and biological evaluation of phosphorus substituted quinoline derivates with antiproliferative activity. European Journal of Medicinal Chemistry, 2018, 149, 225-237.	2.6	52
12	Substituted 1,5-naphthyridine derivatives as novel antileishmanial agents. Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2018, 152, 137-147.	2.6	19
13	Density Functional Theory Study on the Demethylation Reaction between Methylamine, Dimethylamine, Trimethylamine, and Tamoxifen Catalyzed by a Fe(Ⅳ)–Oxo Porphyrin Complex. Journal of Physical Chemistry A, 2018, 122, 1658-1671.	1.1	8
14	Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. European Journal of Medicinal Chemistry, 2018, 158, 874-883.	2.6	27
15	Study of the Hetero-[4+2]-Cycloaddition Reaction of Aldimines and Alkynes. Synthesis of 1,5-Naphthyridine and Isoindolone Derivatives. Journal of Organic Chemistry, 2017, 82, 6379-6387.	1.7	31
16	Reliable Synthesis of Phosphino―and Phosphine Sulfideâ€1,2,3,4â€Tetrahydroquinolines and Phosphine Sulfide Quinolines. European Journal of Organic Chemistry, 2017, 2017, 2916-2924.	1.2	17
17	Advantages of an optical nanosensor system for the mechanistic analysis of a novel topoisomerase I targeting drug: a case study. Nanoscale, 2017, 9, 1886-1895.	2.8	12
18	Reaction of phosphinylated nitrosoalkenes with electron-rich heterocycles. Electrophilic aromatic substitution vs. cycloaddition. Organic and Biomolecular Chemistry, 2017, 15, 662-671.	1.5	10

GLORIA RUBIALES

#	Article	IF	CITATIONS
19	Antileishmanial effect of new indeno-1,5-naphthyridines, selective inhibitors of Leishmania infantum type IB DNA topoisomerase. European Journal of Medicinal Chemistry, 2016, 124, 740-749.	2.6	43
20	Synthesis and biological evaluation of indeno[1,5]naphthyridines as topoisomerase I (TopI) inhibitors with antiproliferative activity. European Journal of Medicinal Chemistry, 2016, 115, 179-190.	2.6	41
21	Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives and Heteroarenes. Chemical Reviews, 2015, 115, 1847-1935.	23.0	886
22	Synthesis and Biological Evaluation of 1,5-Naphthyridines as Topoisomerase I Inhibitors. A New Family of Antiproliferative Agents. Current Topics in Medicinal Chemistry, 2015, 14, 2722-2728.	1.0	13
23	Fluoroalkylated α,β-Unsaturated Imines as Synthons for the Preparation of Fluorinated Triazinane-2,4-diones and Dihydropyrimidin-2(1 <i>H</i>)-ones. Journal of Organic Chemistry, 2014, 79, 5173-5181.	1.7	8
24	Synthesis of Fluorinated β-Aminophosphonates and γ-Lactams. Journal of Organic Chemistry, 2013, 78, 3858-3866.	1.7	31
25	Hetero-Diels–Alder Reaction of Phosphinyl and Phosphonyl Nitroso Alkenes with Conjugated Dienes: An Aza-Cope Rearrangement. Journal of Organic Chemistry, 2011, 76, 6715-6725.	1.7	22
26	Glyoxalateâ€Derived Aldimines in Cycloaddition Reactions with Olefins. European Journal of Organic Chemistry, 2011, 2011, 4318-4326.	1.2	21
27	Lewis Acid Activated Azaâ€Diels–Alder Reaction of <i>N</i> â€{3â€Pyridyl)aldimines: An Experimental and Computational Study. European Journal of Organic Chemistry, 2010, 2010, 2091-2099.	1.2	51
28	Synthesis of Aza Polycyclic Compounds Derived from Pyrrolidine, Indolizidine, and Indole via Intramolecular Dielsâ´'Alder Cycloadditions of Neutral 2-Azadienes. Journal of Organic Chemistry, 2002, 67, 1941-1946.	1.7	88