Slim Bechikh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7840778/publications.pdf Version: 2024-02-01

SUM RECHIKH

#	Article	IF	CITATIONS
1	Solving combinatorial bi-level optimization problems using multiple populations and migration schemes. Operational Research, 2022, 22, 1697-1735.	1.3	6
2	An Evolutionary Multi-objective Approach for Coordinating Supplier–Producer Conflict in Lot Sizing. International Journal of Information Technology and Decision Making, 2022, 21, 541-575.	2.3	2
3	Joint design and compression of convolutional neural networks as a Bi-level optimization problem. Neural Computing and Applications, 2022, 34, 15007-15029.	3.2	9
4	Handling uncertainty in SBSE: a possibilistic evolutionary approach for code smells detection. Empirical Software Engineering, 2022, 27, .	3.0	0
5	Android Malware Detection as a Bi-level Problem. Computers and Security, 2022, , 102825.	4.0	11
6	Topology optimization search of deep convolution neural networks for CT and X-ray image classification. BMC Medical Imaging, 2022, 22, .	1.4	5
7	On the importance of isolated infeasible solutions in the many-objective constrained NSGA-III. Knowledge-Based Systems, 2021, 227, 104335.	4.0	14
8	Evolutionary Optimization of Convolutional Neural Network Architecture Design for Thoracic X-Ray Image Classification. Lecture Notes in Computer Science, 2021, , 121-132.	1.0	10
9	Code smell detection and identification in imbalanced environments. Expert Systems With Applications, 2021, 166, 114076.	4.4	18
10	Deep convolutional neural network architecture design as a bi-level optimization problem. Neurocomputing, 2021, 439, 44-62.	3.5	33
11	Dealing with Label Uncertainty in Web Service Anti-patterns Detection using a Possibilistic Evolutionary Approach. , 2021, , .		1
12	Evolutionary multi-objective optimisation: a bibliometric study. International Journal of Mathematics in Operational Research, 2021, 20, 328.	0.1	0
13	A Possibilistic Evolutionary Approach to Handle the Uncertainty of Software Metrics Thresholds in Code Smells Detection. , 2021, , .		1
14	A co-evolutionary hybrid decomposition-based algorithm for bi-level combinatorial optimization problems. Soft Computing, 2020, 24, 7211-7229.	2.1	4
15	Approximating Complex Pareto Fronts With Predefined Normal-Boundary Intersection Directions. IEEE Transactions on Evolutionary Computation, 2020, 24, 809-823.	7.5	24
16	Solving Combinatorial Multi-Objective Bi-Level Optimization Problems Using Multiple Populations and Migration Schemes. IEEE Access, 2020, 8, 141674-141695.	2.6	21
17	Multi-Agent Cooperation for an Active Perception Based on Driving Behavior: Application in a Car-Following Behavior. Applied Artificial Intelligence, 2020, 34, 710-729.	2.0	2
18	On the use of artificial malicious patterns for android malware detection. Computers and Security, 2020, 92, 101743.	4.0	39

SLIM ВЕСНІКН

#	Article	IF	CITATIONS
19	Feature construction as a bi-level optimization problem. Neural Computing and Applications, 2020, 32, 13783-13804.	3.2	14
20	Class-Dependent Weighted Feature Selection as a Bi-Level Optimization Problem. Communications in Computer and Information Science, 2020, , 269-278.	0.4	1
21	A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection. Memetic Computing, 2019, 11, 193-208.	2.7	42
22	Weighted-Features Construction as a Bi-level Problem. , 2019, , .		3
23	Anticipation model based on a modified fuzzy logic approach. IET Intelligent Transport Systems, 2019, 13, 330-339.	1.7	2
24	A Hybrid Evolutionary Algorithm with Heuristic Mutation for Multi-objective Bi-clustering. , 2019, , .		2
25	Bi-level Decision-making Modeling for an Autonomous Driver Agent: Application in the Car-following Driving Behavior. Applied Artificial Intelligence, 2019, 33, 1157-1178.	2.0	10
26	Multi-objective evolution of oblique decision trees for imbalanced data binary classification. Swarm and Evolutionary Computation, 2019, 49, 1-22.	4.5	13
27	Multi-Objective Evolutionary Algorithm for Image Segmentation. , 2019, , .		1
28	A Constrained Box Algorithm for Imbalanced Data in Satellite Images. , 2019, , .		1
29	A new co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization. Applied Intelligence, 2018, 48, 2847-2872.	3.3	19
30	A New Decomposition-Based NSGA-II for Many-Objective Optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 1191-1210.	5.9	197
31	Handling time-varying constraints and objectives in dynamic evolutionary multi-objective optimization. Swarm and Evolutionary Computation, 2018, 39, 222-248.	4.5	29
32	A Multi-Objective Hybrid Filter-Wrapper Evolutionary Approach for Feature Construction on High-Dimensional Data. , 2018, , .		7
33	Clustering algorithms on imbalanced data using the SMOTE technique for image segmentation. , 2018, ,		5
34	Advances in Evolutionary Multi-objective Optimization. Swarm and Evolutionary Computation, 2018, 40, 155-157.	4.5	2
35	A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy. Soft Computing, 2017, 21, 885-906.	2.1	99
36	On the importance of isolated solutions in constrained decomposition-based many-objective optimization. , 2017, , .		8

3

SLIM BECHIKH

#	Article	IF	CITATIONS
37	Bi-MOCK: A Multi-objective Evolutionary Algorithm for Bi-clustering with Automatic Determination of the Number of Bi-clusters. Lecture Notes in Computer Science, 2017, , 366-376.	1.0	5
38	A Co-evolutionary Decomposition-based Chemical Reaction Algorithm for Bi-level Combinatorial Optimization Problems. Procedia Computer Science, 2017, 112, 780-789.	1.2	8
39	Many-objective Optimization Using Evolutionary Algorithms: A Survey. Adaptation, Learning, and Optimization, 2017, , 105-137.	0.5	38
40	Multi-objective Optimization: Classical and Evolutionary Approaches. Adaptation, Learning, and Optimization, 2017, , 1-30.	0.5	14
41	Dynamic Multi-objective Optimization Using Evolutionary Algorithms: A Survey. Adaptation, Learning, and Optimization, 2017, , 31-70.	0.5	66
42	A memetic evolutionary algorithm for bi-level combinatorial optimization: A realization between Bi-MDVRP and Bi-CVRP. , 2016, , .		5
43	Leveraging evolutionary algorithms for dynamic multi-objective optimization scheduling of multi-tenant smart home appliances. , 2016, , .		5
44	Solving many-objective problems using targeted search directions. , 2016, , .		5
45	On the use of many quality attributes for software refactoring: a many-objective search-based software engineering approach. Empirical Software Engineering, 2016, 21, 2503-2545.	3.0	63
46	Preference Incorporation in Evolutionary Multiobjective Optimization. Advances in Computers, 2015, 98, 141-207.	1.2	75
47	Many-Objective Software Remodularization Using NSGA-III. ACM Transactions on Software Engineering and Methodology, 2015, 24, 1-45.	4.8	197
48	Multi-objective Optimization with Dynamic Constraints and Objectives. , 2015, , .		31
49	An Improved Co-evolutionary Decomposition-based Algorithm for Bi-level Combinatorial Optimization. , 2015, , .		9
50	A co-evolutionary decomposition-based algorithm for Bi-Level combinatorial optimization. , 2015, , .		17
51	MOMM: Multi-objective model merging. Journal of Systems and Software, 2015, 103, 423-439.	3.3	23
52	An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization. IEEE Transactions on Cybernetics, 2015, 45, 2051-2064.	6.2	69
53	Prioritizing code-smells correction tasks using chemical reaction optimization. Software Quality Journal, 2015, 23, 323-361.	1.4	49
54	Recommendation system for software refactoring using innovization and interactive dynamic optimization. , 2014, , .		62

Slim Bechikh

#	Article	IF	CITATIONS
55	Software refactoring under uncertainty. , 2014, , .		7
56	An indicator-based chemical reaction optimization algorithm for multi-objective search. , 2014, , .		5
57	A Robust Multi-objective Approach for Software Refactoring under Uncertainty. Lecture Notes in Computer Science, 2014, , 168-183.	1.0	18
58	Code-Smell Detection as a Bilevel Problem. ACM Transactions on Software Engineering and Methodology, 2014, 24, 1-44.	4.8	64
59	On the Use of Machine Learning and Search-Based Software Engineering for Ill-Defined Fitness Function: A Case Study on Software Refactoring. Lecture Notes in Computer Science, 2014, , 31-45.	1.0	22
60	Search-based metamodel matching with structural and syntactic measures. Journal of Systems and Software, 2014, 97, 1-14.	3.3	23
61	A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection. IEEE Transactions on Software Engineering, 2014, 40, 841-861.	4.3	92
62	Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems. , 2014, , .		24
63	High dimensional search-based software engineering. , 2014, , .		57
64	A Multiple Reference Point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes. , 2014, , .		23
65	Preference-Based Many-Objective Evolutionary Testing Generates Harder Test Cases for Autonomous Agents. Lecture Notes in Computer Science, 2013, , 245-250.	1.0	25
66	Competitive Coevolutionary Code-Smells Detection. Lecture Notes in Computer Science, 2013, , 50-65.	1.0	31
67	On the Influence of the Number of Objectives in Evolutionary Autonomous Software Agent Testing. , 2013, , .		О
68	Preference-based multi-objective software modelling. , 2013, , .		5
69	Articulating Decision Maker's Preference Information within Multiobjective Artificial Immune Systems. , 2012, , .		2
70	Searching for knee regions of the Pareto front using mobile reference points. Soft Computing, 2011, 15, 1807-1823.	2.1	69
71	Negotiating decision makers' reference points for group preference-based Evolutionary Multi-objective Optimization. , 2011, , .		19
72	The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making. IEEE Transactions on Evolutionary Computation, 2010, 14, 801-818.	7.5	268

#	Article	IF	CITATIONS
73	Searching for knee regions in multi-objective optimization using mobile reference points. , 2010, , .		34
74	Estimating nadir point in multi-objective optimization using mobile reference points. , 2010, , .		20
75	PHC-NSGA-II: A Novel Multi-objective Memetic Algorithm for Continuous Optimization. , 2008, , .		11