Mária MeÄiarová

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7840576/publications.pdf

Version: 2024-02-01

430874 434195 1,070 51 18 31 citations h-index g-index papers 66 66 66 1274 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Organocatalytic Diastereodivergent Enantioselective Formal oxaâ€Dielsâ€Alder Reaction of Unsaturated Ketones with Enoates Under Liquidâ€Assisted Grinding Conditions. ChemSusChem, 2022, 15, .	6.8	5
2	Proâ€Pro Dipeptideâ€Thiourea Organocatalyst in the Mannich Reaction between αâ€Imino Esters and Pyruvates. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
3	N-Sulfinylpyrrolidine-containing ureas and thioureas as bifunctional organocatalysts. Beilstein Journal of Organic Chemistry, 2021, 17, 2629-2641.	2.2	4
4	Mechanochemically Activated Asymmetric Organocatalytic Domino Mannich Reaction-Fluorination. ACS Sustainable Chemistry and Engineering, 2020, 8, 14417-14424.	6.7	28
5	Green Asymmetric Organocatalysis. ChemSusChem, 2020, 13, 2828-2858.	6.8	107
6	Synthesis of Chiral 3,4â€Disubstituted Pyrrolidines with Antibacterial Properties. European Journal of Organic Chemistry, 2020, 2020, 2565-2575.	2.4	7
7	Bifunctional Thio/Squaramide Catalyzed Stereoselective Michael Additions of Aldehydes to Nitroalkenes towards Synthesis of Chiral Pyrrolidines. ChemistrySelect, 2019, 4, 8870-8875.	1.5	9
8	Why do thioureas and squaramides slow down the Ireland–Claisen rearrangement?. Beilstein Journal of Organic Chemistry, 2019, 15, 2948-2957.	2.2	2
9	Organocatalysts Effect on the Stereoselectivity of [2,3]â€Wittig Rearrangement. European Journal of Organic Chemistry, 2019, 2019, 605-610.	2.4	10
10	Bifunctional Amine-Squaramides as Organocatalysts in Michael/Hemiketalization Reactions of \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}^4 -Ketoesters and \hat{l}^4 -Unsaturated Ketones with 4-Hydroxycoumarins. Journal of Organic Chemistry, 2018, 83, 13111-13120.	3.2	31
11	Organocatalytic diastereoselective synthesis of spirooxindoles via [3+2] cycloadditions of azomethine ylides with $\hat{l}\pm,\hat{l}^2$ -unsaturated esters. New Journal of Chemistry, 2017, 41, 5506-5512.	2.8	14
12	Terahertz time domain detection of imidazolium ionic liquid reactivity in nanohybrid materials based on Kaolinite and Halloysite. Applied Clay Science, 2017, 135, 475-484.	5.2	5
13	Enantioselective organocatalysis using SOMO activation. New Journal of Chemistry, 2016, 40, 4855-4864.	2.8	41
14	Organocatalytic oxa-Diels–Alder reaction of α,β-unsaturated ketones under non-classical conditions. New Journal of Chemistry, 2015, 39, 2573-2579.	2.8	8
15	Stereoselective domino conjugate addition of Grignard reagents to lactones followed by reaction with activated alkenes catalyzed by ferrocenyl carbene ligands. Tetrahedron: Asymmetry, 2015, 26, 271-275.	1.8	13
16	Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes. Chemical Papers, 2015, 69, .	2.2	7
17	Enantioselective Michael Reaction of Acetals with Nitroalkenes: An Improvement of the Oseltamivir Synthesis. ACS Sustainable Chemistry and Engineering, 2015, 3, 3429-3434.	6.7	10
18	Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes. Chemical Papers, 2014, 68, .	2.2	5

#	Article	IF	Citations
19	Asymmetric organocatalytic SOMO reactions of enol silanes and silyl ketene (thio)acetals. Organic and Biomolecular Chemistry, 2014, 12, 9446-9452.	2.8	20
20	Ferrocene phosphane-heteroatom/carbon bidentate ligands in asymmetric catalysis. Dalton Transactions, 2014, 43, 16557-16579.	3.3	88
21	Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids. Chemical Papers, 2013, 67, .	2.2	7
22	Ferrocene phosphane–carbene ligands in Cu-catalyzed enantioselective 1,4-additions of Grignard reagents to α,β-unsaturated carbonyl compounds. Journal of Organometallic Chemistry, 2013, 737, 47-52.	1.8	27
23	Organocatalyst Efficiency in the Michael Additions of Aldehydes to Nitroalkenes in Water and in a Ballâ€Mill. ChemCatChem, 2012, 4, 1013-1018.	3.7	35
24	Organocatalytic Reactions Under Unusual Conditions. Current Organic Chemistry, 2011, 15, 2257-2281.	1.6	43
25	[5]Ferrocenophanene–Phosphane Ligands for Enantioselective Rhâ€Catalyzed Conjugate Additions. European Journal of Organic Chemistry, 2011, 2011, 6110-6116.	2.4	20
26	Synthesis of aryl(ferrocenyl)methanols via an enantioselective addition of arylboronic acids. Tetrahedron: Asymmetry, 2011, 22, 536-540.	1.8	7
27	Are Ionic Liquids Suitable Media for Organocatalytic Reactions?. European Journal of Organic Chemistry, 2009, 2009, 321-327.	2.4	93
28	Asymmetric organocatalyzed Michael addition of aldehydes to \hat{l}^2 -nitrostyrene in ionic liquids. Tetrahedron: Asymmetry, 2009, 20, 2403-2406.	1.8	21
29	Kinetic Study of Michael Addition Catalyzed by <i>N</i> â€Methylimidazole in Ionic Liquids: Residual <i>N</i> â€Methylimidazole in Ionic Liquids as a Strong Base. European Journal of Organic Chemistry, 2008, 2008, 4408-4411.	2.4	17
30	Enantioselective reductions of [m] ferrocenophanones. Journal of Organometallic Chemistry, 2008, 693, 3131-3134.	1.8	11
31	Imidazolium-Tagged Ferrocene Ligands. Collection of Czechoslovak Chemical Communications, 2007, 72, 1057-1068.	1.0	15
32	Synthesis of Phosphonium Salts—Phosphine Structure and Inorganic Salts Effects. Phosphorus, Sulfur and Silicon and the Related Elements, 2007, 183, 21-33.	1.6	19
33	Michael Additions of Methylene Active Compounds to Chalcone in Ionic Liquids without any Catalyst: The Peculiar Properties of Ionic Liquids. Chemistry - A European Journal, 2007, 13, 1268-1272.	3.3	50
34	Stereoselective Michael Addition of Carbonyl Compounds to (E)- \hat{l}^2 -Nitrostyrene Catalysed by N-Toluensulfonyl-l-proline Amide in Ionic Liquids. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2007, 138, 1181-1186.	1.8	16
35	Michael addition of thiols to $\hat{l}\pm$ -enones in ionic liquids with and without organocatalysts. Organic and Biomolecular Chemistry, 2006, 4, 1420.	2.8	52
36	Enantioselective Aldol Reactions Catalysed by N-Toluenesulfonyl-L-proline Amide in Ionic Liquids Letters in Organic Chemistry, 2006, 3, 437-441.	0.5	13

#	Article	IF	CITATIONS
37	Michael Addition of Thiols to α-Enones: Is Any Catalyst Necessary?. Letters in Organic Chemistry, 2006, 3, 794-797.	0.5	21
38	The sonochemical arylation of active methylene compounds. Ultrasonics Sonochemistry, 2005, 12, 401-403.	8.2	7
39	Study of S N Ar Reactions of Halobenzenes with Imidazole under Ultrasonic and Microwave Irradiation. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2004, 135, 419-423.	1.8	15
40	Study of SNAr Reactions of Halobenzenes with Imidazole under Ultrasonic and Microwave Irradiation ChemInform, 2004, 35, no.	0.0	0
41	Synthesis of Substituted Salicylanilides under Microwave Irradiation. Monatshefte Für Chemie, 2003, 134, 1215-1219.	1.8	8
42	3-Aminophenothiazine Synthesis ChemInform, 2003, 34, no.	0.0	0
43	Synthesis of Substituted Salicylanilides under Microwave Irradiation ChemInform, 2003, 34, no.	0.0	O
44	Ultrasound effect on the aromatic nucleophilic substitution reactions on some haloarenes. Ultrasonics Sonochemistry, 2003, 10, 265-270.	8.2	40
45	On the 3-Aminophenothiazine Synthesis. Synthetic Communications, 2003, 33, 3049-3054.	2.1	7
46	Microwave assisted acylation of methoxyarenes catalyzed by EPZG® catalyst. Green Chemistry, 2002, 4, 361-365.	9.0	11
47	Study of Ultrasound Promoted Aromatic Nucleophilic Substitution of Halobenzenes with Amines. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2002, 134, 37-43.	1.8	2
48	The sonochemical arylation of malonic esters mediated by manganese triacetate. Ultrasonics Sonochemistry, 2001, 8, 119-122.	8.2	16
49	Ultrasound effect on the synthesis of 4-alkyl-(aryl)aminobenzaldehydes. Tetrahedron, 2001, 57, 4781-4785.	1.9	47
50	Ultrasound Assisted Heterogeneous Permanganate Oxidations. Tetrahedron, 2000, 56, 8561-8566.	1.9	31
51	Synthesis of New 2-Hydrazono-4-oxo-5-thiazolidineacetic Acids and Their Alkylamides. Collection of Czechoslovak Chemical Communications, 1997, 62, 124-129.	1.0	1