

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7840530/publications.pdf Version: 2024-02-01

Hully

#	Article	IF	CITATIONS
1	New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chemical Reviews, 2003, 103, 3029-3070.	23.0	2,231
2	Developing Chiral Ligands for Asymmetric Hydrogenation. Accounts of Chemical Research, 2007, 40, 1278-1290.	7.6	301
3	Nâ€Heterocyclic Carbene Catalyzed [4+3] Annulation of Enals and <i>o</i> â€Quinone Methides: Highly Enantioselective Synthesis of Benzoâ€iµâ€Lactones. Angewandte Chemie - International Edition, 2013, 52, 8607-8610.	7.2	277
4	Highly Effective Chiral Ortho-Substituted BINAPO Ligands (o-BINAPO):Â Applications in Ru-Catalyzed Asymmetric Hydrogenations of β-Aryl-Substituted β-(Acylamino)acrylates and β-Keto Esters. Journal of the American Chemical Society, 2002, 124, 4952-4953.	6.6	203
5	A Hybrid Phosphorus Ligand for Highly Enantioselective Asymmetric Hydroformylation. Journal of the American Chemical Society, 2006, 128, 7198-7202.	6.6	199
6	Practical P-Chiral Phosphane Ligand for Rh-Catalyzed Asymmetric Hydrogenation. European Journal of Organic Chemistry, 2005, 2005, 646-649.	1.2	166
7	A Bisphosphepine Ligand with Stereogenic Phosphorus Centers for the Practical Synthesis of β-Aryl-β-Amino Acids by Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2003, 42, 3509-3511.	7.2	161
8	Enantioselective Hydrogenation of Tetrasubstituted Olefins of Cyclic β-(Acylamino)acrylates. Journal of the American Chemical Society, 2003, 125, 9570-9571.	6.6	158
9	Solvent-promoted catalyst-free N-formylation of amines using carbon dioxide under ambient conditions. Chemical Communications, 2016, 52, 6545-6548.	2.2	156
10	Enantioselective Synthesis of Dihydrocoumarins <i>via</i> Nâ€Heterocyclic Carbene atalyzed Cycloaddition of Ketenes and <i>o</i> â€Quinone Methides. Advanced Synthesis and Catalysis, 2009, 351, 2822-2826.	2.1	151
11	Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chemical Society Reviews, 2021, 50, 3211-3237.	18.7	147
12	Rh-Catalyzed Enyne Cycloisomerization. Journal of the American Chemical Society, 2000, 122, 6490-6491.	6.6	144
13	Highly Enantioselective Hydrogenation of Cyclic Enamides Catalyzed by a Rh-PennPhos Catalystâ€. Journal of Organic Chemistry, 1999, 64, 1774-1775.	1.7	141
14	Highly Enantioselective Syntheses of Functionalized α-Methylene-γ-butyrolactones via Rh(I)-catalyzed Intramolecular Alder Ene Reaction:Â Application to Formal Synthesis of (+)-Pilocarpine. Journal of the American Chemical Society, 2002, 124, 8198-8199.	6.6	139
15	Phospholane–Oxazoline Ligands for Ir-Catalyzed Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2003, 42, 943-946.	7.2	139
16	Strong BrÃ,nsted acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed by a Rh–thiourea chiral phosphine complex via anion binding. Chemical Science, 2016, 7, 3047-3051.	3.7	134
17	Highly Efficient Synthesis of Chiral β-Amino Acid Derivatives via Asymmetric Hydrogenation. Organic Letters, 2002, 4, 4159-4161.	2.4	130
18	A Novel Chiral Bisphosphine-Thiourea Ligand for Asymmetric Hydrogenation of β,β-Disubstituted Nitroalkenes. Organic Letters, 2013, 15, 4014-4017.	2.4	118

#	Article	IF	CITATIONS
19	Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Unprotected NH Imines Assisted by a Thiourea. Angewandte Chemie - International Edition, 2014, 53, 8467-8470.	7.2	117
20	Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation. Chemical Reviews, 2021, 121, 7530-7567.	23.0	117
21	Highly Enantioselective Asymmetric Hydrogenation of α-Phthalimide Ketone: An Efficient Entry to Enantiomerically Pure Amino Alcohols. Journal of the American Chemical Society, 2004, 126, 1626-1627.	6.6	116
22	Implementing digital computing with DNA-based switching circuits. Nature Communications, 2020, 11, 121.	5.8	114
23	The First Highly Enantioselective Rh-Catalyzed Enyne Cycloisomerization. Angewandte Chemie - International Edition, 2000, 39, 4104-4106.	7.2	111
24	lridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones. Organic Letters, 2016, 18, 2938-2941.	2.4	110
25	Enantioselective Synthesis of Indole-Fused Dihydropyranones via Catalytic Cycloaddition of Ketenes and 3-Alkylenyloxindoles. Journal of Organic Chemistry, 2010, 75, 6973-6976.	1.7	109
26	Electronâ€Donating and Rigid Pâ€Stereogenic Bisphospholane Ligands for Highly Enantioselective Rhodiumâ€Catalyzed Asymmetric Hydrogenations. Angewandte Chemie - International Edition, 2010, 49, 6421-6424.	7.2	103
27	Synthesis of a New Class of Conformationally Rigid Phosphino-oxazolines:  Highly Enantioselective Ligands for Ir-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2004, 6, 513-516.	2.4	100
28	Highly Enantioselective Rh-Catalyzed Intramolecular Alder–Ene Reactions for the Syntheses of Chiral Tetrahydrofurans. Angewandte Chemie - International Edition, 2002, 41, 3457-3460.	7.2	99
29	Synthesis and Application of Modular Phosphine–Phosphoramidite Ligands in Asymmetric Hydroformylation: Structure–Selectivity Relationship. Chemistry - A European Journal, 2010, 16, 871-877.	1.7	99
30	Anortho-Substituted BIPHEP Ligand and Its Applications in Rh-Catalyzed Hydrogenation of Cyclic Enamides. Organic Letters, 2002, 4, 1695-1698.	2.4	89
31	Rhodiumâ€Catalyzed Asymmetric Hydroformylation of <i>N</i> â€Allylamides: Highly Enantioselective Approach to β ² â€Amino Aldehydes. Angewandte Chemie - International Edition, 2010, 49, 4047-4050.	7.2	86
32	Asymmetric Hydrogenation of Pyridinium Salts with an Iridium Phosphole Catalyst. Angewandte Chemie - International Edition, 2014, 53, 12761-12764.	7.2	86
33	Asymmetric Hydrogenation of Pyridines: Enantioselective Synthesis of Nipecotic Acid Derivatives. European Journal of Organic Chemistry, 2006, 2006, 4343-4347.	1.2	85
34	Practical Syntheses of β-Amino Alcohols via Asymmetric Catalytic Hydrogenation. Journal of Organic Chemistry, 1998, 63, 8100-8101.	1.7	82
35	Asymmetric Dimerization of Disubstituted Ketenes Catalyzed by Nâ€Heterocyclic Carbenes. Advanced Synthesis and Catalysis, 2008, 350, 2715-2718.	2.1	82
36	Rhodium-Catalyzed Enantioselective Hydrogenation of Tetrasubstituted α-Acetoxy β-Enamido Esters: A New Approach to Chiral α-Hydroxyl-β-amino Acid Derivatives. Journal of the American Chemical Society, 2014, 136, 16120-16123.	6.6	82

#	Article	IF	CITATIONS
37	Nickel-catalyzed asymmetric hydrogenation of β-acylamino nitroolefins: an efficient approach to chiral amines. Chemical Science, 2017, 8, 6419-6422.	3.7	82
38	Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands. Organic Letters, 2017, 19, 690-693.	2.4	79
39	Highly Efficient and Highly Enantioselective Asymmetric Hydrogenation of Ketones with TunesPhos/1,2-Diamineâ^Ruthenium(II) Complexes. Journal of Organic Chemistry, 2009, 74, 1397-1399.	1.7	76
40	Rhodiumâ€Catalyzed Enantioselective and Diastereoselective Hydrogenation of βâ€Ketoenamides: Efficient Access to <i>anti</i> 1,3â€Amino Alcohols. Angewandte Chemie - International Edition, 2009, 48, 6052-6054.	7.2	70
41	Readily Accessible and Highly Efficient Ferroceneâ€Based Aminoâ€Phosphineâ€Alcohol (fâ€Amphol) Ligands for Iridiumâ€Catalyzed Asymmetric Hydrogenation of Simple Ketones. Chemistry - A European Journal, 2017, 23, 970-975.	1.7	67
42	Synthesis of Chiral Aliphatic Amines through Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2013, 52, 8416-8419.	7.2	66
43	Rhodium/Yanphos-Catalyzed Asymmetric Interrupted Intramolecular Hydroaminomethylation of <i>trans</i> -1,2-Disubstituted Alkenes. Journal of the American Chemical Society, 2016, 138, 9017-9020.	6.6	66
44	Rhodium Catalyzed Asymmetric Hydrogenation of 2-Pyridine Ketones. Organic Letters, 2015, 17, 4144-4147.	2.4	65
45	Highly Enantioselective Synthesis of Chiral Succinimides via Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation. ACS Catalysis, 2016, 6, 6214-6218.	5.5	65
46	Design and Application of Hybrid Phosphorus Ligands for Enantioselective Rh-Catalyzed Anti-Markovnikov Hydroformylation of Unfunctionalized 1,1-Disubstituted Alkenes. Journal of the American Chemical Society, 2018, 140, 4977-4981.	6.6	64
47	Rh-Catalyzed Kinetic Resolution of Enynes and Highly Enantioselective Formation of 4-Alkenyl-2,3-disubstituted Tetrahydrofurans. Journal of the American Chemical Society, 2003, 125, 11472-11473.	6.6	62
48	Nickel-Catalyzed Enantioselective Hydrogenation of β-(Acylamino)acrylates: Synthesis of Chiral β-Amino Acid Derivatives. Organic Letters, 2017, 19, 5130-5133.	2.4	58
49	Nickel-Catalyzed Highly Enantioselective Hydrogenation of β-Acetylamino Vinylsulfones: Access to Chiral β-Amido Sulfones. Organic Letters, 2018, 20, 5914-5917.	2.4	58
50	A cheap metal for a challenging task: nickel-catalyzed highly diastereo- and enantioselective hydrogenation of tetrasubstituted fluorinated enamides. Chemical Science, 2019, 10, 252-256.	3.7	58
51	Enantioselective Hydrogenation of Tetrasubstituted α,βâ€Unsaturated Carboxylic Acids Enabled by Cobalt(II) Catalysis: Scope and Mechanistic Insights. Angewandte Chemie - International Edition, 2021, 60, 11384-11390.	7.2	58
52	Highly Enantioselective Hydrogenation of β,βâ€Đisubstituted Nitroalkenes. Angewandte Chemie - International Edition, 2012, 51, 8573-8576.	7.2	55
53	Rhodium-Catalyzed Asymmetric Hydrogenation of β-Acetylamino Acrylosulfones: A Practical Approach to Chiral β-Amido Sulfones. ACS Catalysis, 2014, 4, 1570-1573.	5.5	53
54	A new class of readily available and conformationally rigid phosphino-oxazoline ligands for asymmetric catalysis. Tetrahedron, 2005, 61, 6460-6471.	1.0	52

Ηυι Lν

#	Article	IF	CITATIONS
55	Asymmetric hydrogenation of ketones catalyzed by a ruthenium(ii)-indan–ambox complex. Chemical Communications, 2010, 46, 3979.	2.2	52
56	Synthesis of Chiral β-Amino Nitroalkanes via Rhodium-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2016, 18, 40-43.	2.4	52
57	Access to Chiral Seven-Member Cyclic Amines via Rh-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2017, 19, 3855-3858.	2.4	51
58	Highly Enantioselective Synthesis of Chiral γ-Lactams by Rh-Catalyzed Asymmetric Hydrogenation. ACS Catalysis, 2018, 8, 4824-4828.	5.5	48
59	Noncovalent Interaction-Assisted Ferrocenyl Phosphine Ligands in Asymmetric Catalysis. Accounts of Chemical Research, 2020, 53, 1905-1921.	7.6	47
60	Rhodium-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Thiourea Hydrogen Bonding. Organic Letters, 2016, 18, 4451-4453.	2.4	46
61	Direct Catalytic Hydrogenation of Simple Amides: A Highly Efficient Approach from Amides to Amines and Alcohols. Chemistry - A European Journal, 2017, 23, 546-548.	1.7	46
62	Rhodium-Catalyzed Enantioselective Hydrogenation of β-Acylamino Nitroolefins: A New Approach to Chiral β-Amino Nitroalkanes. Organic Letters, 2013, 15, 5524-5527.	2.4	45
63	Scope and Mechanism on Iridiumâ€fâ€Amphamide Catalyzed Asymmetric Hydrogenation of Ketones. Chinese Journal of Chemistry, 2018, 36, 851-856.	2.6	44
64	Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium–f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution. Organic Letters, 2017, 19, 2548-2551.	2.4	41
65	Nickel-Catalyzed Desymmetric Hydrogenation of Cyclohexadienones: An Efficient Approach to All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society, 2019, 141, 14560-14564.	6.6	41
66	Efficient Access to Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation: Scope Study, Mechanistic Explanation, and Origin of Enantioselectivity. ACS Catalysis, 2020, 10, 11153-11161.	5.5	41
67	Design and synthesis of a novel three-hindered quadrant bisphosphine ligand and its application in asymmetric hydrogenation. Chemical Communications, 2010, 46, 8555.	2.2	40
68	Single-Molecular Catalysis Identifying Activation Energy of the Intermediate Product and Rate-Limiting Step in Plasmonic Photocatalysis. Nano Letters, 2020, 20, 2507-2513.	4.5	40
69	Rhodiumâ€Catalyzed Desymmetrization by Hydroformylation of Cyclopentenes: Synthesis of Chiral Carbocyclic Nucleosides. Angewandte Chemie - International Edition, 2016, 55, 6511-6514.	7.2	38
70	Asymmetric Hydrocyanation of Alkenes without HCN. Angewandte Chemie - International Edition, 2019, 58, 10928-10931.	7.2	38
71	Highly Enantioselective Synthesis of Chiral Cyclic Allylic Amines via Rh-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2014, 16, 3484-3487.	2.4	36
72	Rhodium-catalyzed asymmetric hydrogenation of β-cyanocinnamic esters with the assistance of a single hydrogen bond in a precise position. Chemical Science, 2018, 9, 1919-1924.	3.7	35

#	Article	IF	CITATIONS
73	Rhodiumâ€Catalyzed Highly Regio―and Enantioselective Hydrogenation of Tetrasubstituted Allenyl Sulfones: An Efficient Access to Chiral Allylic Sulfones. Angewandte Chemie - International Edition, 2018, 57, 13248-13251.	7.2	35
74	Enantioselective Rh-Catalyzed Anti-Markovnikov Hydroformylation of 1,1-Disubstituted Allylic Alcohols and Amines: An Efficient Route to Chiral Lactones and Lactams. ACS Catalysis, 2019, 9, 8529-8533.	5.5	35
75	Enantioselective Synthesis of Optically Pure β-Amino Ketones and γ-Aryl Amines by Rh-Catalyzed Asymmetric Hydrogenation. Journal of Organic Chemistry, 2011, 76, 332-334.	1.7	34
76	New Synthetic Strategy for Highâ€Enantiopurity Nâ€Protected αâ€Amino Ketones and their Derivatives by Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2011, 353, 253-256.	2.1	33
77	Tunable P-Chiral Bisdihydrobenzooxaphosphole Ligands for Enantioselective Hydroformylation. Organic Letters, 2016, 18, 3346-3349.	2.4	33
78	Highly Regio―and Enantioselective Synthesis of γ,δâ€Unsaturated Amido Esters by Catalytic Hydrogenation of Conjugated Enamides. Angewandte Chemie - International Edition, 2015, 54, 1885-1887.	7.2	32
79	Enantioselective Rhodiumâ€Catalyzed Cycloisomerization of (<i>E</i>)â€1,6â€Enynes. Angewandte Chemie - International Edition, 2016, 55, 6295-6299.	7.2	32
80	Efficient access to chiral 1,2-amino alcohols via Ir/f-amphox-catalyzed asymmetric hydrogenation of α-amino ketones. Organic Chemistry Frontiers, 2017, 4, 1499-1502.	2.3	32
81	Enantioselective and Diastereoselective Ir-Catalyzed Hydrogenation of α-Substituted β-Ketoesters via Dynamic Kinetic Resolution. Organic Letters, 2018, 20, 1888-1892.	2.4	32
82	Highly Enantioselective Hydrogenation of <i>ο</i> -Alkoxy Tetrasubstituted Enamides Catalyzed by a Rh/(<i>R</i> , <i>S</i>)-JosiPhos Catalyst. Organic Letters, 2015, 17, 1842-1845.	2.4	31
83	Asymmetric hydrogenation of α-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols. Organic Chemistry Frontiers, 2017, 4, 555-559.	2.3	31
84	lridium atalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins. Advanced Synthesis and Catalysis, 2018, 360, 2119-2124.	2.1	31
85	Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Sulfamidate Imines: Efficient Synthesis of Chiral Cyclic Sulfamidates. IScience, 2019, 19, 63-73.	1.9	31
86	Pyridine-Directed Asymmetric Hydrogenation of 1,1-Diarylalkenes. Organic Letters, 2017, 19, 5062-5065.	2.4	29
87	Highly Efficient Rh ^I â€Catalyzed Asymmetric Hydrogenation of βâ€Amino Acrylonitriles. Chemistry - A European Journal, 2010, 16, 5301-5304.	1.7	28
88	Silicon-oriented regio- and enantioselective rhodium-catalyzed hydroformylation. Nature Communications, 2018, 9, 2045.	5.8	28
89	Rhodium/bisphosphine-thiourea-catalyzed enantioselective hydrogenation of α,β-unsaturated N-acylpyrazoles. Chemical Communications, 2016, 52, 11677-11680.	2.2	27
90	Rh/DuanPhos-Catalyzed Asymmetric Hydrogenation of β-Acetylamino Vinylsulfides: An Approach to Chiral β-Acetylamino Sulfides. Organic Letters, 2017, 19, 2877-2880.	2.4	27

#	Article	IF	CITATIONS
91	Recent Advances in Asymmetric Hydroformylation. Chinese Journal of Organic Chemistry, 2019, 39, 1568.	0.6	27
92	Synthesis of Chiral β-Borylated Carboxylic Esters via Nickel-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2019, 21, 3923-3926.	2.4	26
93	Highly efficient Ir-catalyzed asymmetric hydrogenation of benzoxazinones and derivatives with a BrA,nsted acid cocatalyst. Chemical Science, 2019, 10, 4328-4333.	3.7	25
94	Rhodium atalyzed Asymmetric Hydroformylation of 1,1â€Disubstituted Allylphthalimides: A Catalytic Route to β ³ â€Amino Acids. Advanced Synthesis and Catalysis, 2013, 355, 679-684.	2.1	24
95	Rhodium-catalyzed asymmetric hydrogenation of tetrasubstituted β-acetoxy-α-enamido esters and efficient synthesis of droxidopa. Chemical Communications, 2017, 53, 8136-8139.	2.2	24
96	Scaling Up Multi-bit DNA Full Adder Circuits with Minimal Strand Displacement Reactions. Journal of the American Chemical Society, 2022, 144, 9479-9488.	6.6	24
97	Enantioselective synthesis of β-substituted chiral allylic amines via Rh-catalyzed asymmetric hydrogenation. Chemical Communications, 2016, 52, 11850-11853.	2.2	22
98	Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Tetrasubstituted Cyclic Enamides: Efficient Access to Chiral Cycloalkylamine Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 597-602.	2.1	22
99	Rh-Catalyzed Asymmetric Hydrogenation of β-Substituted-β-thio-α,β-unsaturated Esters: Expeditious Access to Chiral Organic Sulfides. Organic Letters, 2018, 20, 5636-5639.	2.4	22
100	Enantioselective Access to Chiral 2-Substituted 2,3-Dihydrobenzo[1,4]dioxane Derivatives through Rh-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2018, 20, 4173-4177.	2.4	22
101	Iridium/fâ€Ampholâ€catalyzed Efficient Asymmetric Hydrogenation of Benzoâ€fused Cyclic Ketones. Advanced Synthesis and Catalysis, 2018, 360, 4319-4324.	2.1	22
102	Nickel-Catalyzed Asymmetric Addition of Aromatic Halides to Ketones: Highly Enantioselective Synthesis of Chiral 2,3-Dihydrobenzofurans Containing a Tertiary Alcohol. Organic Letters, 2020, 22, 5353-5357.	2.4	22
103	Highly enantioselective transfer hydrogenation of racemic α-substituted β-keto sulfonamides <i>via</i> dynamic kinetic resolution. Chemical Communications, 2018, 54, 3883-3886.	2.2	21
104	Efficient synthesis of chiral β-hydroxy sulfones <i>via</i> iridium-catalyzed hydrogenation. Organic and Biomolecular Chemistry, 2019, 17, 785-788.	1.5	21
105	Rh-Catalyzed Asymmetric Hydrogenation of Unsaturated Medium-Ring NH Lactams: Highly Enantioselective Synthesis of N-Unprotected 2,3-Dihydro-1,5-benzothiazepinones. Organic Letters, 2020, 22, 920-923.	2.4	21
106	Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined. Angewandte Chemie - International Edition, 2020, 59, 18166-18171.	7.2	21
107	Discovery and development of ferrocene-based tetradentate ligands for Ir-catalysed asymmetric hydrogenation of ketone. Green Synthesis and Catalysis, 2022, 3, 175-178.	3.7	21
108	New synthetic strategy for chiral 2-oxazolidinones derivatives via rhodium-catalyzed asymmetric hydrogenation. Tetrahedron Letters, 2016, 57, 658-662.	0.7	20

#	Article	IF	CITATIONS
109	Efficient synthesis of (S,R)-Bn-Yanphos and Rh/(S,R)-Bn-Yanphos catalyzed asymmetric hydroformylation of vinyl heteroarenes. Organic Chemistry Frontiers, 2017, 4, 288-291.	2.3	20
110	Concise, scalable and enantioselective total synthesis of prostaglandins. Nature Chemistry, 2021, 13, 692-697.	6.6	20
111	Rhodiumâ€catalyzed Asymmetric Hydrogenation of αâ€Dehydroamino Ketones: A General Approach to Chiral αâ€amino Ketones. Chemistry - an Asian Journal, 2016, 11, 231-233.	1.7	19
112	Synthesis of chiral α-substituted α-amino acid and amine derivatives through Ni-catalyzed asymmetric hydrogenation. Chemical Communications, 2020, 56, 4934-4937.	2.2	19
113	Rhodium-Catalyzed Enantioselective Anti-Markovnikov Hydroformylation of α-Substituted Acryl Acid Derivatives. Organic Letters, 2020, 22, 1108-1112.	2.4	19
114	DNA Strand Displacement Reactions to Accomplish a Two-Degree-of-Freedom PID Controller and Its Application in Subtraction Gate. IEEE Transactions on Nanobioscience, 2021, 20, 554-564.	2.2	19
115	Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Alkenyl Sulfones, Benzo[<i>b</i>]thiophene 1,1-Dioxides, with Mechanistic Studies. Organic Letters, 2021, 23, 668-675.	2.4	18
116	Iridium/f-ampha-catalyzed asymmetric hydrogenation of aromatic α-keto esters. Organic Chemistry Frontiers, 2018, 5, 1209-1212.	2.3	17
117	Efficient synthesis of chiral 2,3-dihydro-benzo[<i>b</i>]thiophene 1,1-dioxides <i>via</i> Rh-catalyzed hydrogenation. Chemical Science, 2019, 10, 2507-2512.	3.7	17
118	A Simple Synthetic Route to Enantiopure αâ€Hydroxy Ketone Derivatives by Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2012, 354, 3211-3215.	2.1	16
119	Robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems via hybrid impulsive control. International Journal of Robust and Nonlinear Control, 2015, 25, 987-1006.	2.1	16
120	Rhodium-catalyzed enantioselective hydrogenation of α-amino acrylonitriles: an efficient approach to synthesizing chiral α-amino nitriles. Chemical Communications, 2017, 53, 1313-1316.	2.2	16
121	Highly enantioselective Ir/f-amphox-catalyzed hydrogenation of ketoamides: efficient access to chiral hydroxy amides. Organic Chemistry Frontiers, 2018, 5, 2000-2003.	2.3	16
122	Nickel-Catalyzed Chemoselective Asymmetric Hydrogenation of α,β-Unsaturated Ketoimines: An Efficient Approach to Chiral Allylic Amines. Organic Letters, 2019, 21, 8966-8969.	2.4	16
123	Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle[4.3.0]nonadienes. Nature Communications, 2019, 10, 949.	5.8	16
124	Highly enantioselective synthesis of non-natural aliphatic α-amino acids via asymmetric hydrogenation. Organic and Biomolecular Chemistry, 2015, 13, 7624-7627.	1.5	15
125	Enantioselective Hydrogenation of Tetrasubstituted α,βâ€Unsaturated Carboxylic Acids Enabled by Cobalt(II) Catalysis: Scope and Mechanistic Insights. Angewandte Chemie, 2021, 133, 11485-11491.	1.6	15
126	Rhodium-catalyzed asymmetric hydrogenation of β-acetylamino acrylonitriles. Tetrahedron: Asymmetry, 2011, 22, 506-511.	1.8	14

#	Article	IF	CITATIONS
127	Iridium catalysts with modular axial-unfixed biphenyl phosphine–oxazoline ligands: asymmetric hydrogenation of α,β-unsaturated carboxylic acids. Organic Chemistry Frontiers, 2017, 4, 627-630.	2.3	14
128	Enantioselective Access to Chiral Cyclic Sulfamidates Through Iridiumâ€Catalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2019, 361, 1582-1586.	2.1	14
129	Half adder and half subtractor logic gates based on nicking enzymes. Molecular Systems Design and Engineering, 2019, 4, 1103-1113.	1.7	14
130	Rhodium-catalyzed asymmetric hydrogenation of exocyclic α,β-unsaturated carbonyl compounds. Organic and Biomolecular Chemistry, 2020, 18, 856-859.	1.5	14
131	Kinetic Resolution of Racemic 3,4-Disubstituted 1,4,5,6-Tetrahydropyridine and 3,4-Disubstituted 1,4- Dihydropyridines via Rh-Catalyzed Asymmetric Hydrogenation. ACS Catalysis, 2020, 10, 2603-2608.	5.5	14
132	Chiral Electron-Rich PNP Ligand with a Phospholane Motif: Structural Features and Application in Asymmetric Hydrogenation. Organic Letters, 2020, 22, 8796-8801.	2.4	13
133	Nickel-catalyzed asymmetric arylative cyclization of N-alkynones: Efficient access to 1,2,3,6-tetrahydropyridines with a tertiary alcohol. Chinese Chemical Letters, 2021, 32, 4038-4040.	4.8	13
134	Synthesis of chiral seven-membered β-substituted lactams <i>via</i> Rh-catalyzed asymmetric hydrogenation. Organic and Biomolecular Chemistry, 2018, 16, 8819-8823.	1.5	12
135	Synthesis of chiral cyclic β-amino ketones by Ru-catalyzed asymmetric hydrogenation. Tetrahedron Letters, 2014, 55, 1686-1688.	0.7	11
136	Enantioselective synthesis of chiral multicyclic Î ³ -lactones <i>via</i> dynamic kinetic resolution of racemic Î ³ -keto carboxylic acids. Organic Chemistry Frontiers, 2020, 7, 104-108.	2.3	11
137	Asymmetric Linear-Selective Hydroformylation of 1,1-Dialkyl Olefins Assisted by a Steric-Auxiliary Strategy. Organic Letters, 2020, 22, 4523-4526.	2.4	11
138	Rhodiumâ€Catalyzed Highly Regio―and Enantioselective Hydrogenation of Tetrasubstituted Allenyl Sulfones: An Efficient Access to Chiral Allylic Sulfones. Angewandte Chemie, 2018, 130, 13432-13435.	1.6	10
139	Double Asymmetric Hydrogenation of α-Iminoketones: Facile Synthesis of Enantiopure Vicinal Amino Alcohols. ACS Catalysis, 2021, 11, 12729-12735.	5.5	10
140	New Ruthenium Complexes Based on Tetradentate Bipyridine Ligands for Catalytic Hydrogenation of Esters. Chemistry - an Asian Journal, 2016, 11, 2103-2106.	1.7	9
141	A BPSON Algorithm Applied to DNA Codes Design. IEEE Access, 2019, 7, 88811-88821.	2.6	9
142	Ni-Catalyzed asymmetric reduction of α-keto-β-lactams <i>via</i> DKR enabled by proton shuttling. Chemical Communications, 2020, 56, 15557-15560.	2.2	9
143	Kilogram synthesis of (R)-(-)-denopamine by Ir/f-amphox catalyzed asymmetric hydrogenation. Green Synthesis and Catalysis, 2021, 2, 393-396.	3.7	9
144	Delay-dependent H â^ž control for a class of uncertain time-delay singular Markovian jump systems via hybrid impulsive control. International Journal of Control, Automation and Systems, 2016, 14, 939-947.	1.6	8

#	Article	IF	CITATIONS
145	Asymmetric hydrogenation of 1,4-diketones: facile synthesis of enantiopure 1,4-diarylbutane-1,4-diols. Chemical Communications, 2021, 58, 262-265.	2.2	8
146	New phthalide glycosides from <i>Helichrysum arenarium</i> (L.) Moench. Journal of Asian Natural Products Research, 2009, 11, 352-356.	0.7	7
147	Molecular device design based on chemical reaction networks: state feedback controller, static pre-filter, addition gate control system and full-dimensional state observer. Journal of Mathematical Chemistry, 2022, 60, 915-935.	0.7	7
148	Asymmetric Hydrocyanation of Alkenes without HCN. Angewandte Chemie, 2019, 131, 11044-11047.	1.6	6
149	Copper-Catalyzed Enantioselective 1,2-Reduction of Cycloalkenones. Organic Letters, 2021, 23, 5658-5663.	2.4	6
150	A concise access to bridged [2,2,1] bicyclic lactones with a quaternary stereocenter via stereospecific hydroformylation. Nature Communications, 2021, 12, 5279.	5.8	6
151	Development of Real-Time PCR Based on A137R Gene for the Detection of African Swine Fever Virus. Frontiers in Veterinary Science, 2021, 8, 753967.	0.9	6
152	Rhodiumâ€Catalyzed Chemoâ€, Regio―and Enantioselective Hydroformylation of Cyclopropylâ€Functionalized Trisubstituted Alkenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
153	Rhodiumâ€Catalyzed Desymmetrization by Hydroformylation of Cyclopentenes: Synthesis of Chiral Carbocyclic Nucleosides. Angewandte Chemie, 2016, 128, 6621-6624.	1.6	5
154	Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined. Angewandte Chemie, 2020, 132, 18323-18328.	1.6	5
155	Catalytic Asymmetric Hydrogenation of Tetrasubstituted Unsaturated Lactams: An Efficient Approach to Enantioenriched 3,4-Disubstituted Piperidines. Organic Letters, 2022, , .	2.4	5
156	Ir/f-Ampha complex catalyzed asymmetric sequential hydrogenation of enones: a general access to chiral alcohols with two contiguous chiral centers. Chemical Science, 2022, 13, 1808-1814.	3.7	5
157	Modelling and analysis of haemoglobin catalytic reaction kinetic system. Mathematical and Computer Modelling of Dynamical Systems, 2020, 26, 306-321.	1.4	4
158	A Computational Study of Asymmetric Hydrogenation of <scp>2â€Phenyl</scp> Acrylic Acids Catalyzed by a Rh(I) Catalyst with Ferrocenyl Chiral Bisphosphorus Ligand: The Role of <scp>Ionâ€Pair</scp> Interaction ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1616-1624.	2.6	4
159	Using entropy-driven amplifier circuit response to build nonlinear model under the influence of Lévy jump. BMC Bioinformatics, 2021, 22, 437.	1.2	4
160	Iridium-catalyzed chemoselective asymmetric hydrogenation of conjugated enones with ferrocene-based multidentate phosphine ligands. Chemical Communications, 2022, 58, 5841-5844.	2.2	4
161	Analysis of Periodic Solution of DNA Catalytic Reaction Model With Random Disturbance. IEEE Open Journal of Nanotechnology, 2021, 2, 140-147.	0.9	3
162	Metal-catalyzed asymmetric hydrogenation of ketones. Advances in Catalysis, 2021, , 291-339.	0.1	3

#	Article	IF	CITATIONS
163	Positivity analysis for discrete-time descriptor systems with time delays. , 2014, , .		2
164	Logic Operation Model of the Complementer Based on Two-domain DNA Strand Displacement. Fundamenta Informaticae, 2019, 164, 277-288.	0.3	2
165	Construction of a quaternary stereogenic center by asymmetric hydroformylation: a straightforward method to prepare chiral α-quaternary amino acids. Chemical Science, 2022, 13, 7215-7223.	3.7	2
166	On robust stabilization of uncertain singular markovian jump systems via hybrid impulsive control. , 2014, , .		1
167	Effects of preparation methods on mechanical and tribological properties of SFCM/UP composites. Polymers for Advanced Technologies, 2015, 26, 1306-1311.	1.6	1
168	An Efficient and Modular Route to C3*-TunePhos-Type Ligands. Synthesis, 2017, 49, 3726-3730.	1.2	1
169	On robust stabilization of uncertain singular Markovian jump systems with time-delay. , 2017, , .		1
170	Sliding Mode Control for the Hes1 Biochemical Reaction System Using RBF Neural Networks. , 2018, , .		1
171	Sliding mode control of decaying-dimerizing system. , 2017, , .		0
172	N-dimensional matrices operation based on DNA strand displacement. , 2018, , .		0
173	Innenrücktitelbild: Asymmetric Hydrocyanation of Alkenes without HCN (Angew. Chem. 32/2019). Angewandte Chemie, 2019, 131, 11243-11243.	1.6	0
174	Highly Chemoselective Hydrogenation of Cyclic Imides to ω-hydroxylactams or ω-hydroxyamides Catalyzed by Iridium Catalysts. Organic Chemistry Frontiers, 0, , .	2.3	0
175	Phosphine Ligand Development for Homogeneous Asymmetric Hydrogenation. , 2021, , .		0