Da Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7839690/publications.pdf Version: 2024-02-01

ΝΛ ΖΗΟΙΙ

#	Article	IF	CITATIONS
1	Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology, 2012, 79, 1853-1861.	1.1	310
2	lschemic Conditioning Is Safe and Effective for Octo- and Nonagenarians in Stroke Prevention and Treatment. Neurotherapeutics, 2015, 12, 667-677.	4.4	131
3	Remote Ischemic Conditioning May Improve Outcomes of Patients With Cerebral Small-Vessel Disease. Stroke, 2017, 48, 3064-3072.	2.0	91
4	Progress in moyamoya disease. Neurosurgical Review, 2020, 43, 371-382.	2.4	88
5	Intracranial hypertension induced by internal jugular vein stenosis can be resolved by stenting. European Journal of Neurology, 2018, 25, 365.	3.3	56
6	Evaluation of Plasma d-Dimer Plus Fibrinogen in Predicting Acute CVST. International Journal of Stroke, 2014, 9, 166-173.	5.9	46
7	Advances in chronic cerebral circulation insufficiency. CNS Neuroscience and Therapeutics, 2018, 24, 5-17.	3.9	43
8	Understanding jugular venous outflow disturbance. CNS Neuroscience and Therapeutics, 2018, 24, 473-482.	3.9	37
9	Internal jugular vein stenosis associated with elongated styloid process: five case reports and literature review. BMC Neurology, 2019, 19, 112.	1.8	36
10	The comparative analysis of non-thrombotic internal jugular vein stenosis and cerebral venous sinus stenosis. Journal of Thrombosis and Thrombolysis, 2019, 48, 61-67.	2.1	31
11	Clinical Characteristics and Neuroimaging Findings in Internal Jugular Venous Outflow Disturbance. Thrombosis and Haemostasis, 2019, 119, 308-318.	3.4	31
12	The effect of normobaric oxygen in patients with acute stroke: a systematic review and meta-analysis. Neurological Research, 2018, 40, 433-444.	1.3	28
13	Cervical spondylotic internal jugular venous compression syndrome. CNS Neuroscience and Therapeutics, 2020, 26, 47-54.	3.9	27
14	Antithrombin III associated with fibrinogen predicts the risk of cerebral ischemic stroke. Clinical Neurology and Neurosurgery, 2011, 113, 380-386.	1.4	26
15	Combination Therapy with LXW7 and Ceria Nanoparticles Protects against Acute Cerebral Ischemia/Reperfusion Injury in Rats. Current Medical Science, 2018, 38, 144-152.	1.8	23
16	Clinical characteristics and neuroimaging findings in eagle syndrome induced internal jugular vein stenosis. Annals of Translational Medicine, 2020, 8, 97-97.	1.7	22
17	High-resolution combined arterial spin labeling MR for identifying cerebral arterial stenosis induced by moyamoya disease or atherosclerosis. Annals of Translational Medicine, 2020, 8, 87-87.	1.7	20
18	A proposed framework for cerebral venous congestion. Neuroradiology Journal, 2022, 35, 94-111.	1.2	20

Da Zhou

#	Article	IF	CITATIONS
19	Serum neuron specific enolase may be a marker to predict the severity and outcome of cerebral venous thrombosis. Journal of Neurology, 2018, 265, 46-51.	3.6	18
20	The efficacy and safety of Batroxobin in combination with anticoagulation on cerebral venous sinus thrombosis. Journal of Thrombosis and Thrombolysis, 2018, 46, 371-378.	2.1	18
21	Efficacy of remote ischemic conditioning on improving WMHs and cognition in very elderly patients with intracranial atherosclerotic stenosis. Aging, 2019, 11, 634-648.	3.1	18
22	Styloidectomy and Venous Stenting for Treatment of Styloid-Induced Internal Jugular Vein Stenosis: A Case Report and Literature Review. World Neurosurgery, 2019, 130, 129-132.	1.3	17
23	Risk factors and predictors of outcomes in 243 Chinese patients with cerebral venous sinus thrombosis: A retrospective analysis. Clinical Neurology and Neurosurgery, 2019, 183, 105384.	1.4	17
24	Batroxobin in combination with anticoagulation may promote venous sinus recanalization in cerebral venous thrombosis: A realâ€world experience. CNS Neuroscience and Therapeutics, 2019, 25, 638-646.	3.9	16
25	Pathogenesis and Management in Cerebrovenous Outflow Disorders. , 2021, 12, 203.		15
26	To Predict Visual Deterioration According to the Degree of Intracranial Hypertension in Patients with Cerebral Venous Sinus Thrombosis. European Neurology, 2018, 80, 28-33.	1.4	14
27	Remote ischemic conditioning for the treatment of ischemic moyamoya disease. CNS Neuroscience and Therapeutics, 2020, 26, 549-557.	3.9	13
28	<p>Normobaric oxygen: a novel approach for treating chronic cerebral circulation insufficiency</p> . Clinical Interventions in Aging, 2019, Volume 14, 565-570.	2.9	12
29	High-Resolution Magnetic Resonance Black Blood Thrombus Imaging and Serum D-Dimer in the Confirmation of Acute Cortical Vein Thrombosis. Frontiers in Neurology, 2021, 12, 680040.	2.4	12
30	Clinical and neuroimaging correlates among cohorts of cerebral arteriostenosis, venostenosis and arterio-venous stenosis. Aging, 2019, 11, 11073-11083.	3.1	11
31	Use of Batroxobin in Central and Peripheral Ischemic Vascular Diseases: A Systematic Review. Frontiers in Neurology, 2021, 12, 716778.	2.4	9
32	Circadian rhythms may not influence the outcomes of thrombolysis in patients with ischemic stroke: A study from China. Chronobiology International, 2018, 35, 1533-1542.	2.0	8
33	Clinical Classification and Collateral Circulation in Chronic Cerebrospinal Venous Insufficiency. Frontiers in Neurology, 2020, 11, 913.	2.4	8
34	Internal jugular vein stenosis induced by tortuous internal carotid artery compression: two case reports and literature review. Journal of International Medical Research, 2019, 47, 3926-3933.	1.0	7
35	Probable risk factors of internal jugular vein stenosis in Chinese patients—A real-world cohort study. Clinical Neurology and Neurosurgery, 2020, 191, 105678.	1.4	7
36	Probable factors affecting clinical outcomes of internal jugular vein stenosis. Annals of Translational Medicine, 2019, 7, 621-621.	1.7	7

Da Zhou

#	Article	IF	CITATIONS
37	Clinical differences between acute CVST and non-thrombotic CVSS. Clinical Neurology and Neurosurgery, 2012, 114, 1257-1262.	1.4	6
38	Cerebral watershed infarcts may be induced by hemodynamic changes in blood flow. Neurological Research, 2017, 39, 538-544.	1.3	6
39	Cerebral venous sinus thrombosis due to external compression of internal jugular vein. Journal of International Medical Research, 2021, 49, 030006052110066.	1.0	6
40	Efficacy and safety of rivaroxaban in cerebral venous thrombosis: insights from a prospective cohort study. Journal of Thrombosis and Thrombolysis, 2022, 53, 594-600.	2.1	6
41	Cyclosporine-A-Induced Intracranial Thrombotic Complications: Systematic Review and Cases Report. Frontiers in Neurology, 2020, 11, 563037.	2.4	5
42	The etiologies of new cases of cerebral venous sinus thrombosis reported in the past year. Intractable and Rare Diseases Research, 2012, 1, 23-6.	0.9	5
43	Normobaric oxygen may correct chronic cerebral ischemiaâ€mediated EEG anomalies. CNS Neuroscience and Therapeutics, 2021, 27, 1214-1223.	3.9	4
44	Nonthrombotic internal jugular venous stenosis may facilitate cerebral venous thrombosis. CNS Neuroscience and Therapeutics, 2021, 27, 1396-1408.	3.9	4
45	Blood-brain Barrier Disruption May Contribute to White Matter Lesions in the Setting of Internal Jugular Venous Stenosis. Current Neurovascular Research, 2019, 16, 328-334.	1.1	4
46	Different patterns of white matter lesions among patent foramen ovale, atherosclerotic cerebral small vessel disease and cerebral venous thrombosis. Journal of Thrombosis and Thrombolysis, 2022, 53, 911-925.	2.1	4
47	Impact of seasonal variations on the first ischemic events in patients with moyamoya disease. Clinical Neurology and Neurosurgery, 2018, 173, 65-69.	1.4	3
48	Cerebral venous sinus stenosis should not be neglected when cerebral artery stenosis is confirmed: a case report. International Journal of Neuroscience, 2021, 131, 1237-1242.	1.6	3
49	The antiphospholipid syndrome may induce non-thrombotic internal jugular vein stenosis: two cases report. BMC Neurology, 2021, 21, 9.	1.8	3
50	The Negative Prognostic Role of Inflammatory Biomarkers in Patients With Chronic Cerebrospinal Venous Insufficiency. Neurologist, 2023, 28, 57-68.	0.7	3
51	Arterial spin labeling–MR may be an alternative to SPECT for evaluating cerebral perfusion in patients with unilateral middle cerebral artery stenosis. Neurological Research, 2020, 42, 621-629.	1.3	2
52	Characteristics of cerebral ischemic stroke based on moyamoya disease and atherosclerosis-associated intracranial arterial stenosis. Neurological Sciences, 2021, , 1.	1.9	2
53	Normobaric Oxygen May Ameliorate Cerebral Venous Outflow Disturbance-Related Neurological Symptoms. Frontiers in Neurology, 2020, 11, 599985.	2.4	1
54	Magnetic resonance black-blood thrombus imaging can confirm chronic cerebral venous thrombosis: a case report and literature review. Journal of International Medical Research, 2021, 49, 030006052110170.	1.0	1