Rui C Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7839548/publications.pdf Version: 2024-02-01

RILL C MADTING

#	Article	IF	CITATIONS
1	Immobilization of TiO2 onto a polymeric support for photocatalytic oxidation of a paraben's mixture. Journal of Water Process Engineering, 2022, 46, 102458.	2.6	6
2	Solar energy for liquid wastewater treatment with novel TiO2 supported catalysts. Energy Reports, 2022, 8, 489-494.	2.5	6
3	A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment. Sustainability, 2022, 14, 2702.	1.6	9
4	lon Exchange to Capture Iron after Real Effluent Treatment by Fenton's Process. Water (Switzerland), 2022, 14, 706.	1.2	4
5	An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes. Water (Switzerland), 2022, 14, 825.	1.2	8
6	Evaluation of the Activation Procedure on Oxone Efficiency for Synthetic Olive Mill Wastewater Treatment. Catalysts, 2022, 12, 291.	1.6	6
7	Ozone Kinetic Studies Assessment for the PPCPs Abatement: Mixtures Relevance. ChemEngineering, 2022, 6, 20.	1.0	4
8	Sulfate radical based advanced oxidation processes for agro-industrial effluents treatment: A comparative review with Fenton's peroxidation. Science of the Total Environment, 2022, 832, 155029.	3.9	35
9	Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview. Science of the Total Environment, 2022, 837, 155776.	3.9	28
10	Ecotoxicological Consequences of the Abatement of Contaminants of Emerging Concern by Ozonation—Does Mixture Complexity Matter?. Water (Switzerland), 2022, 14, 1801.	1.2	2
11	Evaluation of Nickel Neurotoxicity and High Sorption through a Hybrid Yeast / Silsesquioxane Material. Silicon, 2021, 13, 259-265.	1.8	0
12	Scale-up impact over solar photocatalytic ozonation with benchmark-P25 and N-TiO2 for insecticides abatement in water. Journal of Environmental Chemical Engineering, 2021, 9, 104915.	3.3	12
13	Olive oil extraction industry wastewater treatment by coagulation and Fenton's process. Journal of Water Process Engineering, 2021, 39, 101818.	2.6	28
14	Biocompounds recovery from olive mill wastewater by liquid-liquid extraction and integration with Fenton's process for water reuse. Environmental Science and Pollution Research, 2021, 28, 29521-29534.	2.7	6
15	Paraben Compounds—Part I: An Overview of Their Characteristics, Detection, and Impacts. Applied Sciences (Switzerland), 2021, 11, 2307.	1.3	52
16	Paraben Compounds—Part II: An Overview of Advanced Oxidation Processes for Their Degradation. Applied Sciences (Switzerland), 2021, 11, 3556.	1.3	8
17	Swine wastewater treatment by Fenton's process and integrated methodologies involving coagulation and biofiltration. Journal of Cleaner Production, 2021, 293, 126105.	4.6	18
18	Editorial Catalysts: Special Issue on Recent Advances in TiO2 Photocatalysts. Catalysts, 2021, 11, 790.	1.6	3

#	Article	IF	CITATIONS
19	Advanced oxidation processes perspective regarding swine wastewater treatment. Science of the Total Environment, 2021, 776, 145958.	3.9	52
20	TiO2 nanotube catalysts for parabens mixture degradation by photocatalysis and ozone-based technologies. Chemical Engineering Research and Design, 2021, 152, 601-613.	2.7	25
21	Synthesis of Catechol Derived Rosamine Dyes and Their Reactivity toward Biogenic Amines. Molecules, 2021, 26, 5082.	1.7	4
22	Coagulation and biofiltration by Corbicula fluminea for COD and toxicity reduction of swine wastewater. Journal of Water Process Engineering, 2021, 42, 102145.	2.6	7
23	Bioenergy Production through Mono and Co-Digestion of Tomato Residues. Energies, 2021, 14, 5563.	1.6	6
24	Supported TiO2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review. Molecules, 2021, 26, 5363.	1.7	19
25	Photocatalytic oxidation of pharmaceutical contaminants of emerging concern using sunlight and visible radiation: Mechanism and ecotoxicological evaluation. Journal of Water Process Engineering, 2021, 43, 102204.	2.6	6
26	Opportunities and Barriers for Valorizing Waste Incineration Bottom Ash: Iberian Countries as a Case Study. Applied Sciences (Switzerland), 2021, 11, 9690.	1.3	11
27	Persulfate Process Activated by Homogeneous and Heterogeneous Catalysts for Synthetic Olive Mill Wastewater Treatment. Water (Switzerland), 2021, 13, 3010.	1.2	12
28	Iron-based catalysts under solar and visible radiation for contaminants of emerging concern removal. Energy Reports, 2020, 6, 711-716.	2.5	5
29	Advanced oxidation processes for recalcitrant compounds removal comparison with biofiltration by Corbicula fluminea. Energy Reports, 2020, 6, 666-671.	2.5	11
30	Editorial: Advanced Processes for Wastewater Treatment and Water Reuse. Frontiers in Environmental Science, 2020, 8, .	1.5	1
31	Removal of a mixture of pharmaceuticals sulfamethoxazole and diclofenac from water streams by a polyamide nanofiltration membrane. Water Science and Technology, 2020, 81, 732-743.	1.2	8
32	N-doped titanium dioxide for mixture of parabens degradation based on ozone action and toxicity evaluation: Precursor of nitrogen and titanium effect. Chemical Engineering Research and Design, 2020, 138, 80-89.	2.7	16
33	Electrochemical oxidation of paraben compounds and the effects of byproducts on neuronal activity. Energy Reports, 2020, 6, 903-908.	2.5	10
34	Unexpected effect of ozone on the paraben's mixture degradation using TiO2 supported nanotubes. Science of the Total Environment, 2020, 743, 140831.	3.9	13
35	Photocatalytic ozonation of parabens mixture using 10% N-TiO2 and the effect of water matrix. Science of the Total Environment, 2020, 718, 137321.	3.9	33
36	Assessment of hazardous property HP 14 using ecotoxicological tests: a case study of weathered coal fly ash. Environmental Science and Pollution Research, 2020, 27, 20972-20983.	2.7	7

#	Article	IF	CITATIONS
37	Screening of low-cost materials as heterogeneous catalysts for olive mill wastewater Fenton's peroxidation. Energy Reports, 2020, 6, 161-167.	2.5	11
38	Moving bed biofilm reactor (MBBR) for dairy wastewater treatment. Energy Reports, 2020, 6, 340-344.	2.5	38
39	Solar Photocatalytic Degradation of Sulfamethoxazole by TiO2 Modified with Noble Metals. Catalysts, 2019, 9, 500.	1.6	31
40	Characterization of Ecotoxicological Effects of Green Liquor Dregs from the Pulp and Paper Industry. ACS Sustainable Chemistry and Engineering, 2019, 7, 14707-14715.	3.2	10
41	TiO2 nanotube arrays-based reactor for photocatalytic oxidation of parabens mixtures in ultrapure water: Effects of photocatalyst properties, operational parameters and light source. Science of the Total Environment, 2019, 689, 79-89.	3.9	27
42	Removal of Enteric Pathogens from Real Wastewater Using Single and Catalytic Ozonation. Water (Switzerland), 2019, 11, 127.	1.2	19
43	Catalytic Efficiency of Red Mud for the Degradation of Olive Mill Wastewater through Heterogeneous Fenton's Process. Water (Switzerland), 2019, 11, 1183.	1.2	22
44	Effect of Different Radiation Sources and Noble Metal Doped onto TiO2 for Contaminants of Emerging Concern Removal. Water (Switzerland), 2019, 11, 894.	1.2	9
45	N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water (Switzerland), 2019, 11, 373.	1.2	112
46	Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach Toward Smart Nutrient Deployment. Chemosensors, 2019, 7, 51.	1.8	29
47	Comparison of radical-driven technologies applied for paraben mixture degradation: mechanism, biodegradability, toxicity and cost assessment. Environmental Science and Pollution Research, 2019, 26, 37174-37192.	2.7	20
48	Study of the influence of the matrix characteristics over the photocatalytic ozonation of parabens using Ag-TiO2. Science of the Total Environment, 2019, 646, 1468-1477.	3.9	46
49	Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Science of the Total Environment, 2019, 649, 1599-1608.	3.9	50
50	Ecotoxicity variation through parabens degradation by single and catalytic ozonation using volcanic rock. Chemical Engineering Journal, 2019, 360, 30-37.	6.6	30
51	Ozone and Photocatalytic Processes for Pathogens Removal from Water: A Review. Catalysts, 2019, 9, 46.	1.6	61
52	Paraben degradation using catalytic ozonation over volcanic rocks. Environmental Science and Pollution Research, 2018, 25, 7346-7357.	2.7	27
53	Environmentally applications of invasive bivalves for water and wastewater decontamination. Science of the Total Environment, 2018, 630, 1016-1027.	3.9	24
54	Integrating Fenton's process and ion exchange for olive mill wastewater treatment and iron recovery. Environmental Technology (United Kingdom), 2018, 39, 308-316.	1.2	15

#	Article	IF	CITATIONS
55	Removal of sulfamethoxazole and diclofenac from water: strategies involving O3 and H2O2. Environmental Technology (United Kingdom), 2018, 39, 1658-1669.	1.2	13
56	Winery wastewater treatment by integrating Fenton's process with biofiltration by <scp><i>Corbicula fluminea</i></scp> . Journal of Chemical Technology and Biotechnology, 2018, 93, 333-339.	1.6	25
57	Comparison of Photocatalytic and Photosensitized Oxidation of Paraben Aqueous Solutions Under Sunlight. Water, Air, and Soil Pollution, 2018, 229, 362.	1.1	15
58	Detoxification of Olive Mill Wastewaters by Fenton's Process. Catalysts, 2018, 8, 662.	1.6	36
59	Effect of Noble Metals (Ag, Pd, Pt) Loading over the Efficiency of TiO2 during Photocatalytic Ozonation on the Toxicity of Parabens. ChemEngineering, 2018, 2, 4.	1.0	34
60	Optimization of operating conditions for the valorization of olive mill wastewater using membrane processes. Environmental Science and Pollution Research, 2018, 25, 21968-21981.	2.7	15
61	Biofiltration using C.Âfluminea for E.coli removal from water: Comparison with ozonation and photocatalytic oxidation. Chemosphere, 2018, 208, 674-681.	4.2	18
62	Electrochemical abatement of amaranth dye solutions using individual or an assembling of flow cells with Ti/Pt and Ti/Pt-SnSb anodes. Separation and Purification Technology, 2017, 179, 194-203.	3.9	34
63	Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes. Journal of Electroanalytical Chemistry, 2017, 785, 180-189.	1.9	75
64	Application of ozonation for pharmaceuticals and personal care products removal from water. Science of the Total Environment, 2017, 586, 265-283.	3.9	321
65	Ozone-Based Technologies for Parabens Removal from Water: Toxicity Assessment. Ozone: Science and Engineering, 2017, 39, 233-243.	1.4	9
66	Detoxification of parabens using UV-A enhanced by noble metals—TiO2 supported catalysts. Journal of Environmental Chemical Engineering, 2017, 5, 3065-3074.	3.3	52
67	Phenolic wastewaters depuration by electrochemical oxidation process using Ti/IrO2 anodes. Environmental Science and Pollution Research, 2017, 24, 7521-7533.	2.7	22
68	A study of bio-hybrid silsesquioxane/yeast: Biosorption and neuronal toxicity of lead. Journal of Biotechnology, 2017, 264, 43-50.	1.9	9
69	Noble metal–TiO2 supported catalysts for the catalytic ozonation of parabens mixtures. Chemical Engineering Research and Design, 2017, 111, 148-159.	2.7	39
70	Photocatalytic ozonation using doped TiO2 catalysts for the removal of parabens in water. Science of the Total Environment, 2017, 609, 329-340.	3.9	78
71	Recovery of phenolic compounds from wastewaters through micellar enhanced ultrafiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 18-24.	2.3	22
72	lron recovery from the Fenton's treatment of winery effluent using an ion-exchange resin. Journal of Molecular Liquids, 2017, 242, 505-511.	2.3	30

#	Article	IF	CITATIONS
73	Dye wastewaters treatment using batch and recirculation flow electrocoagulation systems. Journal of Electroanalytical Chemistry, 2017, 801, 30-37.	1.9	45
74	Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. Chemosphere, 2017, 185, 258-267.	4.2	62
75	From a lab test to industrial application: scaleâ€up of Fenton process for real olive mill wastewater treatment. Journal of Chemical Technology and Biotechnology, 2017, 92, 1336-1344.	1.6	26
76	Environmental preservation of emerging parabens contamination: effect of Ag and Pt loading over the catalytic efficiency of TiO 2 during photocatalytic ozonation. Energy Procedia, 2017, 136, 270-276.	1.8	10
77	Integrating the Fenton's Process with Biofiltration by <i>Corbicula fluminea</i> to Reduce Chemical Oxygen Demand of Winery Effluents. Journal of Environmental Quality, 2017, 46, 436-442.	1.0	12
78	Anaerobic digestion impact on the adaptation to climate change in São Tomé and PrÃncipe. , 2017, , 277-282.		0
79	Hazards identification in waste collection systems: A case study. , 2017, , 227-233.		0
80	Integration of advanced oxidation processes and activated sludge for the treatment of high refractory industrial wastewater. Journal of Chemical Technology and Biotechnology, 2016, 91, 2503-2509.	1.6	7
81	Olive mill effluent depuration by ozonation and Fenton processes enhanced by iron wastes. Water Science and Technology, 2016, 73, 1136-1144.	1.2	3
82	Application of Fenton oxidation to reduce the toxicity of mixed parabens. Water Science and Technology, 2016, 74, 1867-1875.	1.2	27
83	A new winery wastewater treatment approach during vintage periods integrating ferric coagulation, Fenton reaction and activated sludge. Journal of Environmental Chemical Engineering, 2016, 4, 2207-2215.	3.3	35
84	Treatment of Amaranth dye in aqueous solution by using one cell or two cells in series with active and non-active anodes. Electrochimica Acta, 2016, 210, 96-104.	2.6	23
85	Effect of Calcination Temperature over the Performance of Mn-Ce-O on the Catalytic Ozonation of Olive Mill Wastewater. Ozone: Science and Engineering, 2016, 38, 261-271.	1.4	1
86	Integration of traditional systems and advanced oxidation process technologies for the industrial treatment of olive mill wastewaters. Environmental Technology (United Kingdom), 2016, 37, 2524-2535.	1.2	21
87	Ozonation and perozonation on the biodegradability improvement of a landfill leachate. Journal of Environmental Chemical Engineering, 2016, 4, 527-533.	3.3	54
88	Fenton's treatment as an effective treatment for elderberry effluents: economical evaluation. Environmental Technology (United Kingdom), 2016, 37, 1208-1219.	1.2	14
89	Catalytic studies for the abatement of emerging contaminants by ozonation. Journal of Chemical Technology and Biotechnology, 2015, 90, 1611-1618.	1.6	23
90	Photodegradation of single and mixture of parabens – Kinetic, by-products identification and cost-efficiency analysis. Chemical Engineering Journal, 2015, 276, 303-314.	6.6	88

#	Article	IF	CITATIONS
91	Studies on the Chemical Stabilisation of Digestate from Mechanically Recovered Organic Fraction of Municipal Solid Waste. Waste and Biomass Valorization, 2015, 6, 711-721.	1.8	16
92	Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chemical Engineering Journal, 2015, 275, 331-341.	6.6	102
93	Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes. Environmental Science and Pollution Research, 2015, 22, 15587-15597.	2.7	16
94	Ozone/H2O2Performance on the Degradation of Sulfamethoxazole. Ozone: Science and Engineering, 2015, 37, 509-517.	1.4	26
95	Treatment of a Synthetic Phenolic Mixture by Electrocoagulation Using Al, Cu, Fe, Pb, and Zn as Anode Materials. Industrial & Engineering Chemistry Research, 2014, 53, 18339-18345.	1.8	28
96	A Review on the Applications of Ozonation for the Treatment of Real Agro-Industrial Wastewaters. Ozone: Science and Engineering, 2014, 36, 3-35.	1.4	25
97	Nanofiltration and Fenton's process over iron shavings for surfactants removal. Environmental Technology (United Kingdom), 2014, 35, 2380-2388.	1.2	9
98	Low-Cost Catalysts To Enhance Ozone Action on the Depuration of Olive Mill Wastewaters. Industrial & Engineering Chemistry Research, 2014, 53, 15357-15368.	1.8	23
99	Composition Effect of Iron–Copper Composite Catalysts in the Fenton Heterogeneous Process Efficiency and Cooxidation Synergy Assessment. Industrial & Engineering Chemistry Research, 2014, 53, 15369-15373.	1.8	13
100	Flocculation, Ozonation, and Fenton's Process in the Treatment of Distillery Effluents. Journal of Environmental Engineering, ASCE, 2013, 139, 110-116.	0.7	9
101	Catalytic activity of low cost materials for pollutants abatement by Fenton's process. Chemical Engineering Science, 2013, 100, 225-233.	1.9	30
102	Treatment of a simulated phenolic effluent by heterogeneous catalytic ozonation using Pt/Al ₂ O ₃ . Environmental Technology (United Kingdom), 2013, 34, 301-311.	1.2	16
103	Reuse of Homogeneous Fenton's Sludge from Detergent Industry as Fenton's Catalyst. Journal of Advanced Oxidation Technologies, 2013, 16, .	0.5	7
104	Organic biowastes blend selection for composting industrial eggshell by-product: experimental and statistical mixture design. Water Science and Technology, 2012, 65, 1939-1945.	1.2	6
105	Utilization of Ozone Based Techniques for Industrial Effluents Depuration and Reuse. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	0
106	Enhancing Agro-Industrial Wastewaters Depuration by Ozone Oxidation. Ozone: Science and Engineering, 2012, 34, 387-396.	1.4	3
107	Treatment improvement of urban landfill leachates by Fenton-like process using ZVI. Chemical Engineering Journal, 2012, 192, 219-225.	6.6	73
108	Heterogeneous Fenton using ceria based catalysts: effects of the calcination temperature in the process efficiency. Applied Catalysis B: Environmental, 2012, 111-112, 254-263.	10.8	31

#	Article	IF	CITATIONS
109	Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. Journal of Colloid and Interface Science, 2012, 380, 134-140.	5.0	109
110	Advanced oxidation processes for treatment of effluents from a detergent industry. Environmental Technology (United Kingdom), 2011, 32, 1031-1041.	1.2	27
111	Comparison of Advanced Oxidation Processes (AOPs) based on O3 and H2O2 for the Remediation of Real Wastewaters. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	3
112	Remediation of phenolic wastewaters by advanced oxidation processes (AOPs) at ambient conditions: Comparative studies. Chemical Engineering Science, 2011, 66, 3243-3250.	1.9	51
113	Phenolic wastewaters depuration and biodegradability enhancement by ozone over active catalysts. Desalination, 2011, 270, 90-97.	4.0	31
114	Fenton's oxidation process for phenolic wastewater remediation and biodegradability enhancement. Journal of Hazardous Materials, 2010, 180, 716-721.	6.5	122
115	Ceria based solid catalysts for Fenton's depuration of phenolic wastewaters, biodegradability enhancement and toxicity removal. Applied Catalysis B: Environmental, 2010, 99, 135-144.	10.8	55
116	Lumped kinetic models for single ozonation of phenolic effluents. Chemical Engineering Journal, 2010, 165, 678-685.	6.6	38
117	Final Remediation of Post-Biological Treated Milk Whey Wastewater by Ozone. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	12
118	Fenton's Process for Post-Biologically Treated Cheese Production Wastewaters Final Remediation. Toxicity Assessment. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	4
119	Adopting strategies to improve the efficiency of ozonation in the realâ€scale treatment of olive oil mill wastewaters. Environmental Technology (United Kingdom), 2010, 31, 1459-1469.	1.2	25
120	Fenton's Depuration of Weathered Olive Mill Wastewaters over a Feâ^'Ceâ^'O Solid Catalyst. Industrial & Engineering Chemistry Research, 2010, 49, 9043-9051.	1.8	14
121	Integrated Strategy for Treatment of Winery Wastewaters Using Flocculation, Ozonation and Fenton's Oxidation. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	3
122	Session 8. Molecular and Cellular Proteomics, 2009, 8, S55-S56.	2.5	0
123	Catalytic ozonation of phenolic acids over a Mn–Ce–O catalyst. Applied Catalysis B: Environmental, 2009, 90, 268-277.	10.8	138
124	Manganese-Based Catalysts for the Catalytic Remediation of Phenolic Acids by Ozone. Ozone: Science and Engineering, 2009, 31, 402-411.	1.4	12
125	Screening of Ceria-Based and Commercial Ceramic Catalysts for Catalytic Ozonation of Simulated Olive Mill Wastewaters. Industrial & Engineering Chemistry Research, 2009, 48, 1196-1202.	1.8	42

126 Single and Catalytic Ozonation for Phenolic Wastewaters Remediation. , 2008, , .

2