
Hsien-Hsin Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7838681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent developments in molecule-based organic materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 8734.	6.7	362
2	Organic Dyes Containing Furan Moiety for High-Performance Dye-Sensitized Solar Cells. Organic Letters, 2009, 11, 97-100.	2.4	198
3	Application of Cysteine Monolayers for Electrochemical Determination of Sub-ppb Copper(II). Analytical Chemistry, 1999, 71, 1549-1552.	3.2	175
4	New Acetyleneâ€Bridged 9,10â€Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1700032.	10.2	137
5	Dipolar Compounds Containing Fluorene and a Heteroaromatic Ring as the Conjugating Bridge for Highâ€Performance Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 3184-3193.	1.7	124
6	Organic Dyes Incorporating the Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]thiophene Moiety for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2010, 12, 16-19.	2.4	112
7	BODIPY dyes with \hat{l}^2 -conjugation and their applications for high-efficiency inverted small molecule solar cells. Chemical Communications, 2012, 48, 8913.	2.2	94
8	Y-shaped metal-free D–ï€â€"(A)2 sensitizers for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 3092.	5.2	89
9	2,6-Conjugated anthracene sensitizers for high-performance dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2477.	15.6	88
10	Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962.	8.8	87
11	Organic Dyes Containing a Cyanovinyl Entity in the Spacer for Solar Cells Applications. Journal of Physical Chemistry C, 2008, 112, 19739-19747.	1.5	84
12	Arylamine-Based Dyes for p-Type Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 4930-4933.	2.4	83
13	A feasible scalable porphyrin dye for dye-sensitized solar cells under one sun and dim light environments. Journal of Materials Chemistry A, 2016, 4, 11878-11887.	5.2	83
14	Squaraine-Arylamine Sensitizers for Highly Efficient p-Type Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 4726-4729.	2.4	79
15	High-performance dye-sensitized solar cells based on 5,6-bis-hexyloxy-benzo[2,1,3]thiadiazole. Journal of Materials Chemistry, 2012, 22, 10929.	6.7	79
16	Highâ€Performance Dyeâ€Sensitized Solar Cells Based on Phenothiazine Dyes Containing Double Anchors and Thiophene Spacers. Chemistry - an Asian Journal, 2014, 9, 357-366.	1.7	79
17	Porphyrin Dimers as Hole-Transporting Layers for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1620-1626.	8.8	62
18	Benzotriazoleâ€Containing D–π–A Conjugated Organic Dyes for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Iournal. 2013. 8. 809-816.	1.7	60

HSIEN-HSIN CHOU

#	Article	IF	CITATIONS
19	Incorporating a New 2 <i>H</i> -[1,2,3]Triazolo[4,5- <i>c</i>]pyridine Moiety To Construct D–Aâ^'π–A Organic Sensitizers for High Performance Solar Cells. Organic Letters, 2014, 16, 3052-3055.	2.4	51
20	Dibenzo[f,h]thieno[3,4-b] quinoxaline-Based Small Molecules for Efficient Bulk-Heterojunction Solar Cells. Organic Letters, 2009, 11, 4898-4901.	2.4	49
21	Influence of Phenylethynylene of Push–Pull Zinc Porphyrins on the Photovoltaic Performance. ACS Applied Materials & Interfaces, 2016, 8, 3418-3427.	4.0	49
22	Heteroleptic Ruthenium Sensitizers That Contain an Ancillary Bipyridine Ligand Tethered with Hydrocarbon Chains for Efficient Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 6781-6788.	1.7	43
23	Thieno[3,4â€ <i>b</i>]thiopheneâ€Based Organic Dyes for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 5430-5437.	1.7	43
24	Synthesis, optical and electrochemical properties of pyridal[2,1,3]thiadiazole based organic dyes for dye sensitized solar cells. Organic Electronics, 2014, 15, 378-390.	1.4	39
25	Dihydrophenanthrene-Based Metal-Free Dyes for Highly Efficient Cosensitized Solar Cells. Organic Letters, 2012, 14, 3612-3615.	2.4	38
26	Naphtho[2,3- <i>c</i>][1,2,5]thiadiazole and 2 <i>H</i> -Naphtho[2,3- <i>d</i>][1,2,3]triazole-Containing D–Aâ^'l€â€"A Conjugated Organic Dyes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 6117-6126.	4.0	38
27	Synthesis and Characterization of Novel β-Bis(<i>N</i> , <i>N</i> -diarylamino)-Substituted Porphyrin for Dye-Sensitized Solar Cells under 1 sun and Dim Light Conditions. ACS Applied Materials & Interfaces, 2018, 10, 39970-39982.	4.0	36
28	Synthesis and characterization of naphthalene diimide (NDI)-based near infrared chromophores with two-photon absorbing properties. Tetrahedron, 2010, 66, 8629-8634.	1.0	35
29	Benzothiadiazole-containing donor–acceptor–acceptor type organic sensitizers for solar cells with ZnO photoanodes. Chemical Communications, 2012, 48, 12071.	2.2	34
30	Structurally Simple and Easily Accessible Perylenes for Dye-Sensitized Solar Cells Applicable to Both 1 Sun and Dim-Light Environments. ACS Applied Materials & Interfaces, 2017, 9, 37786-37796.	4.0	33
31	A remarkable enhancement of efficiency by co-adsorption with CDCA on the bithiazole-based dye-sensitized solar cells. Organic Electronics, 2013, 14, 2546-2554.	1.4	32
32	Organic Dyes Incorporating the Dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2- <i>c</i>]furazan Moiety for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22612-22621.	4.0	30
33	<i>tert</i> -Butylpyridine Coordination with [Cu(dmp) ₂] ^{2+/+} Redox Couple and Its Connection to the Stability of the Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2020, 12, 5812-5819.	4.0	30
34	Dipolar organic pyridyl dyes for dye-sensitized solar cell applications. Tetrahedron, 2012, 68, 767-773.	1.0	28
35	Naphthyl and Thienyl Units as Bridges for Metalâ€Free Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 1074-1084.	1.7	27
36	Novel Organic Sensitizers Containing 2,6-Difunctionalized Anthracene Unit for Dye Sensitized Solar Cells. Polymers, 2012, 4, 1443-1461.	2.0	23

HSIEN-HSIN CHOU

#	Article	IF	CITATIONS
37	Coplanar indenofluorene-based organic dyes for dye-sensitized solar cells. Tetrahedron, 2012, 68, 7755-7762.	1.0	23
38	First-Principle Determination of Electronic Coupling and Prediction of Charge Recombination Rates in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 983-992.	1.5	20
39	Synthesis and characterization of cyclometalated iridium(III) complexes containing pyrimidine-based ligands. Journal of Organometallic Chemistry, 2009, 694, 2757-2769.	0.8	18
40	Anthracene Organic Sensitizer with Dual Anchors for Efficient and Robust Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 5479-5486.	2.5	14
41	Reactions of Ruthenium Acetylide and Vinylidene Complexes Containing a 2-Pyridyl Group. Organometallics, 2008, 27, 5212-5220.	1.1	13
42	Dye‣ensitized Solar Cells Based on (Donorâ€ï€â€Acceptor) ₂ Dyes With Dithiafulvalene as the Donor. Chemistry - an Asian Journal, 2014, 9, 1933-1942.	1.7	13
43	Thermal and angular dependence of nextâ€generation photovoltaics under indoor lighting. Progress in Photovoltaics: Research and Applications, 2020, 28, 111-121.	4.4	13
44	Reactions of Ruthenium Vinylidene and Acetylide Complexes Containing Trichloromethyl Groups: Preparation of a Cyclobutenonyl Complex by Solid‧tate Photolysis. Chemistry - A European Journal, 2009, 15, 3221-3229.	1.7	10
45	Electron injection in TiO2 films and quasi-solid state solar cells sensitized with a dipolar fluorene organic dye. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 18-24.	2.0	10
46	Porphyrinâ€Based Simple and Practical Dopantâ€Free Holeâ€Transporting Materials for Efficient Perovskite Solar Cells Using TiO ₂ Semiconductors. Solar Rrl, 2020, 4, 2000119.	3.1	9
47	Effect of Thiophene Insertion on X-Shaped Anthracene-Based Hole-Transporting Materials in Perovskite Solar Cells. Polymers, 2022, 14, 1580.	2.0	2