Manfred Frasch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7838563/publications.pdf

Version: 2024-02-01

53794 69250 6,759 83 45 77 citations h-index g-index papers 113 113 113 3845 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Screens in fly and beetle reveal vastly divergent gene sets required for developmental processes. BMC Biology, 2022, 20, 38.	3.8	11
2	Yorkie and JNK revert syncytial muscles into myoblasts during Org-1–dependent lineage reprogramming. Journal of Cell Biology, 2019, 218, 3572-3582.	5.2	11
3	A Large Scale Systemic RNAi Screen in the Red Flour Beetle <i>Tribolium castaneum</i> Ioldentifies Novel Genes Involved in Insect Muscle Development. G3: Genes, Genomes, Genetics, 2019, 9, 1009-1026.	1.8	13
4	RNAi Screen in <i>Tribolium</i> Reveals Involvement of F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects. G3: Genes, Genomes, Genetics, 2019, 9, 1141-1151.	1.8	4
5	T-Box Genes in Drosophila Mesoderm Development. Current Topics in Developmental Biology, 2017, 122, 161-193.	2.2	11
6	Preface. Current Topics in Developmental Biology, 2017, 122, xiii-xviii.	2.2	0
7	Genome-Wide Approaches to Drosophila Heart Development. Journal of Cardiovascular Development and Disease, 2016, 3, 20.	1.6	7
8	Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Current Topics in Developmental Biology, 2016, 116, 331-355.	2.2	18
9	Org-1-Dependent Lineage Reprogramming Generates the Ventral Longitudinal Musculature of the Drosophila Heart. Current Biology, 2015, 25, 488-494.	3.9	40
10	The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nature Communications, 2015, 6, 7822.	12.8	139
11	An Org-1–Tup transcriptional cascade reveals different types of alary muscles connecting internal organs in <i>Drosophila</i> i>Development (Cambridge), 2014, 141, 3761-3771.	2.5	26
12	Distinct functions of the laminin \hat{l}^2 LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila. BMC Developmental Biology, 2014, 14, 26.	2.1	57
13	Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis. Developmental Biology, 2013, 376, 245-259.	2.0	21
14	Genome-Wide Screens for In Vivo Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures. PLoS Genetics, 2013, 9, e1003195.	3.5	62
15	Org-1, the <i>Drosophila</i> ortholog of Tbx1, is a direct activator of known identity genes during muscle specification. Development (Cambridge), 2012, 139, 1001-1012.	2.5	46
16	The FGF8-related signals Pyramus and Thisbe promote pathfinding, substrate adhesion, and survival of migrating longitudinal gut muscle founder cells. Developmental Biology, 2012, 368, 28-43.	2.0	31
17	Spalt mediates an evolutionarily conserved switch to fibrillar muscle fate in insects. Nature, 2011, 479, 406-409.	27.8	101
18	Genetic and Genomic Dissection of Cardiogenesis in the Drosophila Model. Pediatric Cardiology, 2010, 31, 325-334.	1.3	48

#	Article	IF	Citations
19	Development and Aging of the Drosophila Heart. , 2010, , 47-86.		28
20	Regulation and Functions of the lms Homeobox Gene during Development of Embryonic Lateral Transverse Muscles and Direct Flight Muscles in Drosophila. PLoS ONE, 2010, 5, e14323.	2.5	21
21	<i>HLH54F</i> is required for the specification and migration of longitudinal gut muscle founders from the caudal mesoderm of <i>Drosophila</i> . Development (Cambridge), 2010, 137, 3107-3117.	2.5	31
22	<i>Drosophila</i> Tey represses transcription of the repulsive cue Toll and generates neuromuscular target specificity. Development (Cambridge), 2010, 137, 2139-2146.	2.5	27
23	A matter of timing: microRNA-controlled temporal identities in worms and flies. Genes and Development, 2008, 22, 1572-1576.	5.9	10
24	Drosophila mind bomb2 is required for maintaining muscle integrity and survival. Journal of Cell Biology, 2007, 179, 219-227.	5.2	23
25	Evolution of the dorsal-ventral patterning network in the mosquito, Anopheles gambiae. Development (Cambridge), 2007, 134, 2415-2424.	2.5	70
26	The Drosophila Hand gene is required for remodeling of the developing adult heart and midgut during metamorphosis. Developmental Biology, 2007, 311, 287-296.	2.0	30
27	MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Current Opinion in Genetics and Development, 2006, 16, 533-539.	3.3	55
28	Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development (Cambridge), 2006, 133, 4073-4083.	2.5	86
29	Development of the Larval Visceral Musculature. , 2006, , 62-78.		11
30	The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development (Cambridge), 2005, 132, 4911-4925.	2.5	96
31	Nuclear integration of positive Dpp signals, antagonistic Wg inputs and mesodermal competence factors during Drosophila visceral mesoderm induction. Development (Cambridge), 2005, 132, 1429-1442.	2.5	51
32	Expression, Regulation, and Requirement of the Toll Transmembrane Protein during Dorsal Vessel Formation in Drosophila melanogaster. Molecular and Cellular Biology, 2005, 25, 4200-4210.	2.3	54
33	The homeodomain of Tinman mediates homo- and heterodimerization of NK proteins. Biochemical and Biophysical Research Communications, 2005, 334, 361-369.	2.1	17
34	Tbx20-related genes, mid and H15, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. Mechanisms of Development, 2005, 122, 1056-1069.	1.7	69
35	pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes and Development, 2004, 18, 687-699.	5.9	163
36	Survey of forkhead domain encoding genes in the Drosophila genome: Classification and embryonic expression patterns. Developmental Dynamics, 2004, 229, 357-366.	1.8	81

#	Article	IF	CITATIONS
37	Establishing A–P Polarity in the Embryonic Heart Tube A Conserved Function of Hox Genes in Drosophila and Vertebrates?. Trends in Cardiovascular Medicine, 2003, 13, 182-187.	4.9	50
38	Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature, 2003, 425, 507-512.	27.8	165
39	The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp. Development (Cambridge), 2003, 130, 3187-3204.	2.5	124
40	Early Signals in Cardiac Development. Circulation Research, 2002, 91, 457-469.	4.5	272
41	Homeotic Genes Autonomously Specify the Anteroposterior Subdivision of the Drosophila Dorsal Vessel into Aorta and Heart. Developmental Biology, 2002, 251, 307-319.	2.0	91
42	The $\hat{1}^2$ 3 tubulin gene is a direct target of bagpipe and biniou in the visceral mesoderm of Drosophila. Mechanisms of Development, 2002, 114, 85-93.	1.7	16
43	Homeotic Genes Autonomously Specify the Anteroposterior Subdivision of the Drosophila Dorsal Vessel into Aorta and Heart. Developmental Biology, 2002, 251, 307-307.	2.0	4
44	Cardiogenesis in the Drosophila Model: Control Mechanisms during Early Induction and Diversification of Cardiac Progenitors. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 1-12.	1.1	24
45	Molecular Integration of Inductive and Mesoderm-Intrinsic Inputs Governs even-skipped Enhancer Activity in a Subset of Pericardial and Dorsal Muscle Progenitors. Developmental Biology, 2001, 238, 13-26.	2.0	98
46	A role for the COUP-TF-related gene seven-up in the diversification of cardioblast identities in the dorsal vessel of Drosophila. Mechanisms of Development, 2001, 104, 49-60.	1.7	176
47	A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. BioEssays, 2001, 23, 125-133.	2.5	79
48	<i>biniou</i> (<i>FoxF</i>), a central component in a regulatory network controlling visceral mesoderm development and midgut morphogenesis in <i>Drosophila</i> . Genes and Development, 2001, 15, 2900-2915.	5.9	133
49	Functional studies of the BTB domain in the Drosophila GAGA and Mod(mdg4) proteins. Nucleic Acids Research, 2000, 28, 3864-3870.	14.5	24
50	Mergers and Acquisitions. Cell, 2000, 102, 127-129.	28.9	23
51	The NK-2 homeobox gene scarecrow (scro) is expressed in pharynx, ventral nerve cord and brain of Drosophila embryos. Mechanisms of Development, 2000, 94, 237-241.	1.7	58
52	Hmx: an evolutionary conserved homeobox gene family expressed in the developing nervous system in mice and Drosophila. Mechanisms of Development, 2000, 99, 123-137.	1.7	66
53	Genetic Control of Mesoderm Patterning and Differentiation During Drosophila Embryogenesis. Advances in Developmental Biochemistry, 1999, , 1-47.	0.9	8
54	Controls in patterning and diversification of somatic muscles during Drosophila embryogenesis. Current Opinion in Genetics and Development, 1999, 9, 522-529.	3.3	95

#	Article	IF	CITATIONS
55	Sequence and expression of myoglianin, a novel Drosophila gene of the TGF- \hat{I}^2 superfamily. Mechanisms of Development, 1999, 86, 171-175.	1.7	87
56	Intersecting signalling and transcriptional pathways in Drosophilaheart specification. Seminars in Cell and Developmental Biology, 1999, 10, 61-71.	5.0	49
57	Genetic Determination of Drosophila Heart Development. , 1999, , 65-90.		35
58	Regulation and function oftinman during dorsal mesoderm induction and heart specification inDrosophila. Genesis, 1998, 22, 187-200.	2.1	90
59	bagpipe-dependent expression of vimar, a novel Armadillo-repeats gene, in Drosophila visceral mesoderm. Mechanisms of Development, 1998, 72, 65-75.	1.7	17
60	Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the <i>Drosophila </i> mesoderm. Genes and Development, 1998, 12, 2354-2370.	5.9	242
61	Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Genesis, 1998, 22, 187-200.	2.1	1
62	A Novel KH-Domain Protein Mediates Cell Adhesion Processes inDrosophila. Developmental Biology, 1997, 190, 241-256.	2.0	43
63	Bapxl: an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mechanisms of Development, 1997, 65, 145-162.	1.7	101
64	msh may play a conserved role in dorsoventral patterning of the neuroectoderm and mesoderm. Mechanisms of Development, 1996, 58, 217-231.	1.7	121
65	Segmentation and specification of the Drosophila mesoderm. Genes and Development, 1996, 10, 3183-3194.	5.9	179
66	Yeast Srp1, a nuclear protein related toDrosophila and mouse pendulin, is required for normal migration, division, and integrity of nuclei during mitosis. Molecular Genetics and Genomics, 1995, 248, 351-363.	2.4	53
67	Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature, 1995, 374, 464-467.	27.8	406
68	Pendulin, a Drosophila protein with cell cycle-dependent nuclear localization, is required for normal cell proliferation Journal of Cell Biology, 1995, 129, 1491-1507.	5.2	127
69	tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila Genes and Development, 1993, 7, 1325-1340.	5.9	692
70	A dual requirement for neurogenic genes in Drosophila myogenesis. Development (Cambridge), 1993, 119, 149-161.	2.5	62
71	Sequence similarity between the mammalian bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature, 1991, 353, 353-355.	27.8	235
72	Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin Genes and Development, 1991, 5, 1611-1621.	5.9	104

#	Article	IF	CITATIONS
73	The Drosophila homologue of vertebrate myogenic-determination genes encodes a transiently expressed nuclear protein marking primary myogenic cells Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3782-3786.	7.1	129
74	Two puff-specific proteins bind within the 2.5 kb upstream region of theDrosophila melanogaster Sgs-4 gene. Chromosoma, 1990, 99, 52-60.	2.2	35
75	A new Drosophila homeo box gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis Genes and Development, 1990, 4, 2098-2111.	5.9	214
76	Two proteins from Drosophila nuclei are bound to chromatin and are detected in a series of puffs on polytene chromosomes. Chromosoma, 1989, 97, 272-281.	2.2	32
77	Specific radioimmunoprecipitation of histone H2A antigens by protein A conjugated sepharose. Experientia, 1988, 44, 347-348.	1.2	0
78	Molecular analysis of even-skipped mutants in Drosophila development Genes and Development, 1988, 2, 1824-1838.	5.9	113
79	Complementary patterns of even-skipped and fushi tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila Genes and Development, 1987, 1, 981-995.	5.9	274
80	Appearance of two maternally directed histone H2A variants precedes zygotic ubiquitination of H2A in early embryogenesis of Sciara coprophila (Diptera). Developmental Biology, 1987, 122, 568-576.	2.0	15
81	Maternal regulation of zerkn $\tilde{A}\frac{1}{4}$ llt: a homoeobox gene controlling differentiation of dorsal tissues in Drosophila. Nature, 1987, 330, 583-586.	27.8	151
82	Immunological dissection of the <i>Drosophila</i> nucleus. Biochemical Society Transactions, 1985, 13, 100-101.	3.4	0
83	Nonpackaging and packaging proteins of hnRNA in Drosophila melanogaster. Cell, 1983, 33, 529-541.	28.9	75