
Hugo Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7838303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post-Earthquake Fire Assessment of Reinforced Concrete Frame Structures. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2023, 33, 596-610.	0.5	2
2	Experimental Investigation on the Possible Effect of Previous Damage, Workmanship and Test Setup on the Out-of-plane Behaviour of Masonry Infill Walls. Journal of Earthquake Engineering, 2022, 26, 5647-5678.	1.4	10
3	Influence of Beam-to-Column Connections in the Seismic Performance of Precast Concrete Industrial Facilities. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2022, 32, 507-519.	0.5	3
4	Effect of Proportioning of Lateral Stiffness in Orthogonal Directions on Seismic Performance of RC Buildings. Journal of Earthquake Engineering, 2022, 26, 7568-7586.	1.4	2
5	Effect of spatio-temporal variability of the seismic signal on the dynamic pressure behind retaining walls. Innovative Infrastructure Solutions, 2022, 7, 1.	1.1	2
6	Effect of bidirectional excitation on seismic performance of regular RC frame buildings designed for modern codes. Earthquake Spectra, 2022, 38, 950-980.	1.6	9
7	Seismic Assessment of Earthen Structures. RILEM State-of-the-Art Reports, 2022, , 181-210.	0.3	1
8	Load Path Effect on the Response of Slender Lightly Reinforced Square RC Columns under Biaxial Bending. Journal of Structural Engineering, 2022, 148, .	1.7	8
9	Building survey and characterization techniques at different scales. , 2022, , 1-31.		1
10	Cyclic behaviour of precast beamâ€ŧo column connections with low seismic detailing. Earthquake Engineering and Structural Dynamics, 2022, 51, 1096-1114.	2.5	3
11	Building Condition Indicators Analysis for BIM-FM Integration. Archives of Computational Methods in Engineering, 2022, 29, 3919-3942.	6.0	11
12	Influence of textile reinforced mortars strengthening on the in-plane/out-of-plane response of masonry infill walls in RC frames. Engineering Structures, 2022, 254, 113887.	2.6	11
13	The importance of indirect losses in the seismic risk assessment of industrial buildings – An application to precast RC buildings in Portugal. International Journal of Disaster Risk Reduction, 2022, 74, 102949.	1.8	6
14	Damage index model and hysteretic viscous damping of masonry infill walls subjected to out-of-plane loadings. Journal of Building Engineering, 2022, 50, 104196.	1.6	1
15	Interactions between Seismic Safety and Energy Efficiency for Masonry Infill Walls: A Shift of the Paradigm. Energies, 2022, 15, 3269.	1.6	5
16	Seismic assessment of existing precast RC industrial buildings in Portugal. Structures, 2022, 41, 777-786.	1.7	2
17	Seismic vulnerability of bhutanese vernacular stone masonry buildings: From damage observation to fragility analysis. Soil Dynamics and Earthquake Engineering, 2022, 160, 107351.	1.9	15
18	The Effect of a Textile-Reinforced Mortar on the Flexural Response of Energy-Improved Infill Walls. Journal of Composites for Construction, 2022, 26, .	1.7	2

#	Article	IF	CITATIONS
19	Cyclic behaviour of as-built and strengthened existing reinforced concrete columns previously damaged by fire. Engineering Structures, 2022, 266, 114584.	2.6	7
20	Development of a Numerical Tool for the Seismic Vulnerability Assessment of Vernacular Architecture. Journal of Earthquake Engineering, 2021, 25, 2926-2954.	1.4	12
21	Seismic Vulnerability and Loss Assessment of Vila Real de Santo António, Portugal: Application of a Novel Method. International Journal of Architectural Heritage, 2021, 15, 1585-1607.	1.7	4
22	Seismic fragility functions for Portuguese RC precast buildings. Bulletin of Earthquake Engineering, 2021, 19, 6573-6590.	2.3	8
23	Cantilever flexural strength tests of masonry infill walls strengthened with textile-reinforced mortar. Journal of Building Engineering, 2021, 33, 101611.	1.6	7
24	Seismic Vulnerability of Urban Vernacular Buildings in Nepal: Case of Newari Construction. Journal of Earthquake Engineering, 2021, 25, 43-64.	1.4	12
25	Perspectives and Approaches for the Out-of-Plane Testing of Masonry Infill Walls. Experimental Techniques, 2021, 45, 457-469.	0.9	1
26	OUT-OF-PLANE TESTING OF MASONRY INFILL WALLS MADE WITH LIGHTWEIGHT CONCRETE BLOCKS. , 2021, , .		0
27	Building Information Modelling Conversion for Radiowave Propagation Studies. , 2021, , .		1
28	Risk-Informed Performance-Based Metrics for Evaluating the Structural Safety and Serviceability of Constructed Assets against Natural Disasters. Sustainability, 2021, 13, 5925.	1.6	8
29	Post-earthquake fire risk assessment of historic urban areas: A scenario-based analysis applied to the Historic City Centre of Leiria, Portugal. International Journal of Disaster Risk Reduction, 2021, 60, 102287.	1.8	11
30	A Review of the Performance of Infilled RC Structures in Recent Earthquakes. Applied Sciences (Switzerland), 2021, 11, 5889.	1.3	17
31	Building condition assessment supported by Building Information Modelling. Journal of Building Engineering, 2021, 38, 102186.	1.6	24
32	Numerical modeling of the seismic performance of Romanian timber-framed masonry walls. Engineering Structures, 2021, 239, 112272.	2.6	9
33	Assessment of the Seismic Behavior of a Precast Reinforced Concrete Industrial Building with the Presence of Horizontal Cladding Panels. Buildings, 2021, 11, 400.	1.4	4
34	Updating mechanical properties of two-leaf stone masonry walls through experimental data and Bayesian inference. Construction and Building Materials, 2021, 298, 123626.	3.2	3
35	The role of the openings in the out-of-plane behaviour of masonry infill walls. Engineering Structures, 2021, 244, 112793.	2.6	6
36	Experimental characterization of the out-of-plane behaviour of masonry infill walls made of lightweight concrete blocks. Engineering Structures, 2021, 244, 112755.	2.6	9

#	Article	IF	CITATIONS
37	Effect of the infill panels in the floor response spectra of an 8-storey RC building. Structures, 2021, 34, 2476-2498.	1.7	5
38	Experimental and numerical assessment of confined infill walls with openings and textile-reinforced mortar. Soil Dynamics and Earthquake Engineering, 2021, 151, 106960.	1.9	16
39	The use of textile-reinforced mortar as a strengthening technique for the infill walls out-of-plane behaviour. Composite Structures, 2021, 255, 113029.	3.1	22
40	Geometrical, constructive, and mechanical characterization of the traditional masonry buildings in the historic city center of Leiria, Portugal. , 2021, , 147-174.		0
41	Soft computing-based models for the prediction of masonry compressive strength. Engineering Structures, 2021, 248, 113276.	2.6	61
42	Assessment of Seismic Behavior of an RC Precast Building. Advances in Science, Technology and Innovation, 2021, , 303-308.	0.2	0
43	Data Acquisition in Cultural Heritage Buildings Using Non-destructive Techniques, and Its Gathering with BIM—The Case Study of the Gothic Monastery of Batalha in Portugal. Advances in Science, Technology and Innovation, 2021, , 59-68.	0.2	4
44	Editorial on the Special Issue: Advanced Structural Health Monitoring: From Theory to Applications. Applied Sciences (Switzerland), 2021, 11, 11401.	1.3	1
45	Editorial: Advances in Seismic Performance and Risk Estimation of Precast Concrete Buildings. Frontiers in Built Environment, 2021, 7, .	1.2	2
46	Effect of the Panel Width Support and Columns Axial Load on the Infill Masonry Walls Out-Of-Plane Behavior. Journal of Earthquake Engineering, 2020, 24, 653-681.	1.4	34
47	A dynamic multi-criteria decision-making model for the maintenance planning of reinforced concrete structures. Journal of Building Engineering, 2020, 27, 100971.	1.6	11
48	Evaluation of post-earthquake fire capacity of reinforced concrete elements. Soil Dynamics and Earthquake Engineering, 2020, 128, 105900.	1.9	20
49	Risk management in water supply networks: Aveiro case study. Environmental Science and Pollution Research, 2020, 27, 4598-4611.	2.7	7
50	Seismic Vulnerability Assessment of a Water Supply Network: City of Aveiro Case Study. Advances in Science, Technology and Innovation, 2020, , 27-31.	0.2	0
51	Seismic fragility assessment of revised MRT buildings considering typical construction changes. Frontiers of Structural and Civil Engineering, 2020, 14, 241-266.	1.2	4
52	Evaluation of post-earthquake fire capacity of a reinforced concrete one bay plane frame under ISO fire exposure. Structures, 2020, 23, 602-611.	1.7	10
53	Numerical simulation of beam-to-column connections in precast reinforced concrete buildings using fibre-based frame models. Engineering Structures, 2020, 203, 109845.	2.6	22
54	Seismic damage scenarios for the Historic City Center of Leiria, Portugal: Analysis of the impact of different seismic retrofitting strategies on emergency planning. International Journal of Disaster Risk Reduction, 2020, 44, 101432.	1.8	20

#	Article	IF	CITATIONS
55	Cost-effective analysis of textile-reinforced mortar solutions used to reduce masonry infill walls collapse probability under seismic loads. Structures, 2020, 28, 141-157.	1.7	8
56	Experimental tests on strengthening strategies for masonry infill walls: A literature review. Construction and Building Materials, 2020, 263, 120520.	3.2	37
57	Characterisation of Portuguese RC Precast Industrial Building Stock. Advances in Civil Engineering, 2020, 2020, 1-19.	0.4	7
58	3D Indoor Radio Coverage for 5G Planning: a Framework of Combining BIM with Ray-tracing. , 2020, , .		2
59	Numerical Modeling of RC Columns and a Modified Steel Model Proposal for Elements With Plain Bars. Frontiers in Built Environment, 2020, 6, .	1.2	2
60	Impact of the Textile Mesh on the Efficiency of TRM Strengthening Solutions to Improve the Infill Walls Out-of-Plane Behaviour. Applied Sciences (Switzerland), 2020, 10, 8745.	1.3	5
61	A Building Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage. Remote Sensing, 2020, 12, 4028.	1.8	28
62	Modelling structural performance and risk for enhanced building resilience and reliability. Innovative Infrastructure Solutions, 2020, 5, 1.	1.1	5
63	Experimental analysis of strengthening solutions for the out-of-plane collapse of masonry infills in RC structures through textile reinforced mortars. Engineering Structures, 2020, 207, 110203.	2.6	38
64	Assessment and mitigation of seismic risk at the urban scale: an application to the historic city center of Leiria, Portugal. Bulletin of Earthquake Engineering, 2020, 18, 2607-2634.	2.3	24
65	Mechanical properties characterization of different types of masonry infill walls. Frontiers of Structural and Civil Engineering, 2020, 14, 411-434.	1.2	20
66	Seismic Vulnerability Assessment of Existing Reinforced Concrete Buildings in Urban Centers. Sustainability, 2020, 12, 1996.	1.6	16
67	Energy efficiency assessment of a public building resourcing a BIM model. Innovative Infrastructure Solutions, 2020, 5, 1.	1.1	9
68	Non-destructive Method of the Assessment of Stone Masonry by Artificial Neural Networks. Open Construction and Building Technology Journal, 2020, 14, 84-97.	0.3	7
69	Geostatistical Analysis of Settlements Induced by Liquefaction – Case Study River Lis Alluviums, Portugal. Springer Series in Geomechanics and Geoengineering, 2020, , 106-113.	0.0	Ο
70	Integração num Modelo BIM de Dados Construtivos do Mosteiro da Batalha Obtidos com Diversas Tecnologias Geoespaciais. , 2020, , .		1
71	Seismic Performance Assessment, Retrofitting and Loss Estimation of an Existing Non-Engineered Building in Nepal. , 2020, , 43-70.		0
72	Masonry Buildings: Research and Practice. Buildings, 2019, 9, 162.	1.4	1

#	Article	IF	CITATIONS
73	Use of post-earthquake damage data to calibrate, validate and compare two seismic vulnerability assessment methods for vernacular architecture. International Journal of Disaster Risk Reduction, 2019, 39, 101242.	1.8	21
74	A vulnerability index formulation for the seismic vulnerability assessment of vernacular architecture. Engineering Structures, 2019, 197, 109381.	2.6	29
75	Influence of traditional earthquake-resistant techniques on the out-of-plane behaviour of stone masonry walls: Experimental and numerical assessment. Engineering Structures, 2019, 201, 109815.	2.6	7
76	BIM-based LCA assessment of seismic strengthening solutions for reinforced concrete precast industrial buildings. Innovative Infrastructure Solutions, 2019, 4, 1.	1.1	25
77	Seismic Retrofit Schemes with FRP for Deficient RC Beam-Column Joints: State-of-the-Art Review. Journal of Composites for Construction, 2019, 23, .	1.7	54
78	Bridging Multi-hazard Vulnerability and Sustainability: Approaches and Applications to Nepali Highway Bridges. , 2019, , 361-378.		9
79	Cost-benefit analysis of retrofitted non-engineered and engineered buildings in Nepal using probabilistic approach. Soil Dynamics and Earthquake Engineering, 2019, 122, 1-15.	1.9	3
80	Study of the Seismic Response on the Infill Masonry Walls of a 15-Storey Reinforced Concrete Structure in Nepal. Buildings, 2019, 9, 39.	1.4	30
81	Natural Hazards Challenges to Civil Engineering. Advances in Civil Engineering, 2019, 2019, 1-2.	0.4	Ο
82	Masonry Compressive Strength Prediction Using Artificial Neural Networks. Communications in Computer and Information Science, 2019, , 200-224.	0.4	29
83	Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects. Applied Sciences (Switzerland), 2019, 9, 243.	1.3	83
84	Ductility considerations in seismic design of reinforced concrete frameÂbuildings according to the Eurocode 8. Innovative Infrastructure Solutions, 2019, 4, 1.	1.1	6
85	Development of a Web Application for Historical Building Management through BIM Technology. Advances in Civil Engineering, 2019, 2019, 1-15.	0.4	25
86	Seismic performance of RC precast industrial buildings—learning with the past earthquakes. Innovative Infrastructure Solutions, 2019, 4, 1.	1.1	26
87	EXPERIMENTAL ASSESSMENT OF STRENGTHENING STRATEGY TO IMPROVE THE MASONRY INFILLS OUT-OF-PLANE BEHAVIOUR THROUGH TEXTILE REINFORCED MORTAR. , 2019, , .		2
88	EXPERIMENTAL ASSESSMENT OF STRENGTHENING STRATEGIES AGAINST THE OUT-OF-PLANE COLLAPSE OF MASONRY INFILLS IN EXISTING RC STRUCTURES. , 2019, , .		0
89	A estabilidade estrutural e a vulnerabilidade dos edifÃcios em centros históricos face ao risco sÃsmico. Estudos CindAÌ,inicos, 2019, , 67-102.	0.1	0
90	Desempenho sÃsmico de edifÃcios: lições de sismos recentes. Estudos CindAÌ,inicos, 2019, , 47-66.	0.1	0

#	Article	IF	CITATIONS
91	Populating the knowledge base of a conversational agent. , 2019, , .		0
92	A Framework for the inclusion of RF transparency parameters into BIM databases. , 2019, , .		1
93	Long-term monitoring of a damaged historic structure using a wireless sensor network. Engineering Structures, 2018, 161, 108-117.	2.6	27
94	Building life cycle applied to refurbishment of a traditional building from Oporto, Portugal. Journal of Building Engineering, 2018, 17, 84-95.	1.6	36
95	Out-of-plane behavior of masonry infilled RC frames based on the experimental tests available: A systematic review. Construction and Building Materials, 2018, 168, 831-848.	3.2	52
96	Numerical modelling of the cyclic behavior of timber-framed structures. Engineering Structures, 2018, 165, 210-221.	2.6	22
97	Simple design of masonry infilled reinforced concrete frames for earthquake resistance. Engineering Structures, 2018, 171, 961-981.	2.6	7
98	Experimental study of repaired RC columns subjected to uniaxial and biaxial horizontal loading and variable axial load with longitudinal reinforcement welded steel bars solutions. Engineering Structures, 2018, 155, 371-386.	2.6	33
99	Stochastic collocation-based nonlinear analysis of concrete bridges with uncertain parameters. Structure and Infrastructure Engineering, 2018, 14, 1324-1338.	2.0	12
100	Assessment of the influence of horizontal diaphragms on the seismic performance of vernacular buildings. Bulletin of Earthquake Engineering, 2018, 16, 3871-3904.	2.3	29
101	Seismic behavior of two Portuguese adobe buildings: Part I - in-plane cyclic testing of a full-scale adobe wall. International Journal of Architectural Heritage, 2018, 12, 922-935.	1.7	9
102	Seismic behavior of two Portuguese adobe buildings: part II —numerical modeling and fragility assessment. International Journal of Architectural Heritage, 2018, 12, 936-950.	1.7	11
103	Study of a self-compacting fiber-reinforced concrete to be applied in the precast industry. Innovative Infrastructure Solutions, 2018, 3, 1.	1.1	11
104	Seismic Assessment of a School Building in Nepal and Analysis of Retrofitting Solutions. International Journal of Civil Engineering, 2018, 16, 1573-1589.	0.9	14
105	Influence of Infill Masonry Walls in the Seismic Response of Buildings: From Field Observations to Laboratory Research. Springer Natural Hazards, 2018, , 451-466.	0.1	0
106	Load-Path Influence in the Response of RC Buildings Subjected to Biaxial Horizontal Loadings: Numerical Study. International Journal of Civil Engineering, 2018, 16, 739-755.	0.9	6
107	Calibration of a simplified macro-model for infilled frames with openings. Advances in Structural Engineering, 2018, 21, 157-170.	1.2	17
108	Seismic Retrofit of Adobe Constructions. Building Pathology and Rehabilitation, 2018, , 85-111.	0.1	1

#	Article	IF	CITATIONS
109	Seismic Analysis of a Portuguese Vernacular Building. Journal of Architectural Engineering, 2018, 24, 05017010.	0.8	6
110	Structural Repair and Strengthening of RC Elements with Concrete Jacketing. Building Pathology and Rehabilitation, 2018, , 181-198.	0.1	9
111	Employment of optical fibers for RC bond-slip characterization. Procedia Structural Integrity, 2018, 11, 138-144.	0.3	1
112	Comparative study on the seismic performance assessment of existing buildings with and without retrofit strategies. International Journal of Advanced Structural Engineering, 2018, 10, 439-464.	1.3	7
113	Experimental Study of Rubberized Concrete Stress-Strain Behavior for Improving Constitutive Models. Materials, 2018, 11, 2245.	1.3	35
114	Modelling of Structures under Seismic, Impact, and Shock Vibrations. Shock and Vibration, 2018, 2018, 1-2.	0.3	0
115	Mainshock-aftershock damage assessment of infilled RC structures. Engineering Structures, 2018, 175, 645-660.	2.6	49
116	Prediction of the earthquake response of a three-storey infilled RC structure. Engineering Structures, 2018, 171, 214-235.	2.6	32
117	Out-of-plane behavior of stone masonry walls: Experimental and numerical analysis. Construction and Building Materials, 2018, 179, 430-452.	3.2	35
118	Revisiting Major Historical Earthquakes in Nepal. , 2018, , 1-17.		19
119	Seismic Performance of Buildings in Nepal After the Gorkha Earthquake. , 2018, , 47-63.		28
120	Response and Rehabilitation of Historic Monuments After the Gorkha Earthquake. , 2018, , 65-94.		7
121	Assessment of the efficiency of traditional earthquake resistant techniques for vernacular architecture. Engineering Structures, 2018, 173, 1-27.	2.6	21
122	Optical sensors for bond-slip characterization and monitoring of RC structures. Sensors and Actuators A: Physical, 2018, 280, 332-339.	2.0	23
123	Mechanical characterization of concrete block used on infill masonry panels. International Journal of Structural Integrity, 2018, 9, 281-295.	1.8	4
124	Double-Leaf Infill Masonry Walls Cyclic In-Plane Behaviour: Experimental and Numerical Investigation. Open Construction and Building Technology Journal, 2018, 12, 35-48.	0.3	16
125	Post-earthquake Field Measurement-Based System Identification and Finite Element Modeling of an 18-Story Masonry-Infilled RC Building. Lecture Notes in Civil Engineering, 2018, , 746-757.	0.3	1
126	Self-Compacting Fiber Reinforced Concrete for Precast Industry. International Journal of Structural and Civil Engineering Research, 2018, , 189-193.	0.1	1

#	Article	IF	CITATIONS
127	Structural and Non-Structural Assessment of a RC Water Tank. International Journal of Structural and Civil Engineering Research, 2018, , 204-212.	0.1	0
128	Evaluation of different strengthening techniques' efficiency for a soft storey building. European Journal of Environmental and Civil Engineering, 2017, 21, 371-388.	1.0	30
129	Modal identification of infill masonry walls with different characteristics. Engineering Structures, 2017, 145, 118-134.	2.6	27
130	Experimental evaluation of energy dissipation and viscous damping of repaired and strengthened RC columns with CFRP jacketing under biaxial load. Engineering Structures, 2017, 145, 162-175.	2.6	26
131	Traditional earthquake resistant techniques for vernacular architecture and local seismic cultures: A literature review. Journal of Cultural Heritage, 2017, 27, 181-196.	1.5	90
132	Assessment of the mainshock-aftershock collapse vulnerability of RC structures considering the infills in-plane and out-of-plane behaviour. Procedia Engineering, 2017, 199, 619-624.	1.2	9
133	Generation of spectrum-compatible acceleration time history for Nepal. Comptes Rendus - Geoscience, 2017, 349, 198-201.	0.4	9
134	Structural health monitoring of the retrofitting process, characterization and reliability analysis of a masonry heritage construction. Journal of Civil Structural Health Monitoring, 2017, 7, 405-428.	2.0	14
135	Seismic performance of the infill masonry walls and ambient vibration tests after the Chorka 2015, Nepal earthquake. Bulletin of Earthquake Engineering, 2017, 15, 1185-1212.	2.3	61
136	Performance of Medium-to-High Rise Reinforced Concrete Frame Buildings with Masonry Infill in the 2015 Gorkha, Nepal, Earthquake. Earthquake Spectra, 2017, 33, 197-218.	1.6	49
137	Mechanical Characterisation of Masonry Walls with Flat-Jack Tests. , 2017, , 53-73.		1
138	Dynamic Measurements as Support to the Assessment of the Monastery of Santa Maria Da Vitoria, Batalha. , 2017, , 159-171.		0
139	Seismic Vulnerability and Parametric Study on a Bare Frame Building in Nepal. Frontiers in Built Environment, 2016, 2, .	1.2	6
140	Simplified macroâ€model for infill masonry walls considering the outâ€ofâ€plane behaviour. Earthquake Engineering and Structural Dynamics, 2016, 45, 507-524.	2.5	111
141	<i>In situ</i> Out-of-Plane Cyclic Testing of Original and Strengthened Traditional Stone Masonry Walls Using Airbags. Journal of Earthquake Engineering, 2016, 20, 749-772.	1.4	16
142	Seismic behavior of RC building structures designed according to current codes. Structures, 2016, 7, 1-13.	1.7	24
143	Seismic assessment of low ductile RC structures: buildings from before the modern seismic codes. Engineering Computations, 2016, 33, 1282-1307.	0.7	0
144	Local Seismic Cultures: The Use of Timber Frame Structures in the South of Portugal. Lecture Notes in Civil Engineering, 2016, , 101-111.	0.3	3

#	Article	IF	CITATIONS
145	Seismic safety assessment of existing masonry infill structures in Nepal. Earthquake Engineering and Engineering Vibration, 2016, 15, 251-268.	1.1	17
146	Common structural and construction deficiencies of Nepalese buildings. Innovative Infrastructure Solutions, 2016, 1, 1.	1.1	109
147	Numerical modelling of RC strengthened columns under biaxial loading. Innovative Infrastructure Solutions, 2016, 1, 1.	1.1	3
148	Global overview on advances in structural health monitoring platforms. Journal of Civil Structural Health Monitoring, 2016, 6, 461-475.	2.0	49
149	Geometric characterisation of Portuguese RC buildings with masonry infill walls. European Journal of Environmental and Civil Engineering, 2016, 20, 396-411.	1.0	34
150	Earthquake loss estimation for the Kathmandu Valley. Bulletin of Earthquake Engineering, 2016, 14, 59-88.	2.3	39
151	Groundwater level monitoring using a plastic optical fiber. Sensors and Actuators A: Physical, 2016, 240, 138-144.	2.0	29
152	Experimental evaluation of out-of-plane capacity of masonry infill walls. Engineering Structures, 2016, 111, 48-63.	2.6	148
153	Behavior of Rectangular Reinforced-Concrete Columns under Biaxial Cyclic Loading and Variable Axial Loads. Journal of Structural Engineering, 2016, 142, .	1.7	46
154	Evaluation of the contribution of masonry infill panels on the seismic behaviour of two existing reinforced concrete buildings. KSCE Journal of Civil Engineering, 2016, 20, 1365-1374.	0.9	8
155	The infilled RC structures performance in the 25th April, 2015 Gorkha Nepal earthquake: Observations and dynamic characterization tests. , 2016, , 2517-2524.		1
156	Site effects and associated structural damage analysis in Kathmandu Valley, Nepal. Earthquake and Structures, 2016, 10, 1013-1032.	1.0	25
157	Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources. Earthquake and Structures, 2016, 11, 517-538.	1.0	21
158	Metabolic.Care: A Novel Solution Based on a Thermography for Detection of Diabetic Foot. Advances in Intelligent Systems and Computing, 2016, , 113-119.	0.5	0
159	The infilled RC structures performance in the 25th April, 2015 Gorkha Nepal earthquake: Observations and dynamic characterizatio tests. , 2016, , 2517-2524.		0
160	Structural survey and diagnosis of historical constructions – the experience of the Construction Institute. Vitruvio, 2016, 1, 49.	0.2	0
161	Experimental study of the out-of-plane behaviour of masonry infill walls with and without previous in-plane damage. , 2016, , 1201-1208.		1
162	Seismic behavior of an old masonry building in Vila Real de Santo António, Portugal. , 2016, , 1567-1574.		1

Seismic behavior of an old masonry building in Vila Real de Santo Ant \tilde{A}^3 nio, Portugal. , 2016, , 1567-1574. 162

#	Article	IF	CITATIONS
163	In-plane Response of Masonry Infill Walls: Experimental Study using Digital Image Correlation. Procedia Engineering, 2015, 114, 870-876.	1.2	8
164	2D and 3D Digital Image Correlation in Civil Engineering – Measurements in a Masonry Wall. Procedia Engineering, 2015, 114, 215-222.	1.2	41
165	Experimental Characterization of the In-plane and Out-of-Plane Behaviour of Infill Masonry Walls. Procedia Engineering, 2015, 114, 862-869.	1.2	12
166	Investigation of the characteristics of Portuguese regular moment-frame RC buildings and development of a vulnerability model. Bulletin of Earthquake Engineering, 2015, 13, 1455-1490.	2.3	70
167	Experimental cyclic behaviour of RC columns with plain bars and proposal for Eurocode 8 formula improvement. Engineering Structures, 2015, 88, 22-36.	2.6	35
168	Seismic behavior of strengthened RC columns under biaxial loading: An experimental characterization. Construction and Building Materials, 2015, 95, 393-405.	3.2	26
169	Seismic vulnerability and loss assessment of the Nepalese Pagoda temples. Bulletin of Earthquake Engineering, 2015, 13, 2197-2223.	2.3	15
170	Seismic risk assessment and hazard mapping in Nepal. Natural Hazards, 2015, 78, 583-602.	1.6	74
171	Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees. International Journal of Advanced Structural Engineering, 2015, 7, 117-127.	1.3	62
172	Seismic Rehabilitation of RC Columns Under Biaxial Loading: An Experimental Characterization. Structures, 2015, 3, 43-56.	1.7	21
173	Influence of the in Plane and Out-of-Plane Masonry Infill Walls' Interaction in the Structural Response of RC Buildings. Procedia Engineering, 2015, 114, 722-729.	1.2	23
174	Seismic risk assessment for mainland Portugal. Bulletin of Earthquake Engineering, 2015, 13, 429-457.	2.3	116
175	Cyclic behaviour of interior beam–column joints reinforced with plain bars. Earthquake Engineering and Structural Dynamics, 2015, 44, 1351-1371.	2.5	30
176	Experimental study of bond–slip in RC structural elements with plain bars. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2367-2381.	1.3	32
177	Seismic behaviour analysis and retrofitting of a row building. , 2015, , 213-218.		4
178	Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal. Earthquake and Structures, 2015, 8, 511-539.	1.0	18
179	Seismic response of current RC buildings in Kathmandu Valley. Structural Engineering and Mechanics, 2015, 53, 791-818.	1.0	29
180	EFFICIENCY OF DIFFERENT RETROFITTING TECHNICHS FOR RC COLUMNS UNDER BIAXIAL LOADING: EXPERIMENTAL STUDY. , 2015, , .		1

#	Article	IF	CITATIONS
181	EVALUATION OF SEISMIC VULNERABILITY ASSESSMENT PARAMETERS FOR PORTUGUESE VERNACULAR CONSTRUCTIONS WITH NONLINEAR NUMERICAL ANALYSIS. , 2015, , .		2
182	Dynamic structural health monitoring of a civil engineering structure with a POF accelerometer. Sensor Review, 2014, 34, 36-41.	1.0	17
183	Design Procedures of Reinforced Concrete Framed Buildings in Nepal and its Impact on Seismic Safety. Advances in Structural Engineering, 2014, 17, 1419-1442.	1.2	10
184	Response reduction factor of irregular RC buildings in Kathmandu valley. Earthquake Engineering and Engineering Vibration, 2014, 13, 455-470.	1.1	26
185	Seismic sensitivity analysis of the common structural components of Nepalese Pagoda temples. Bulletin of Earthquake Engineering, 2014, 12, 1679-1703.	2.3	27
186	Tuned liquid dampers simulation for earthquake response control of buildings. Bulletin of Earthquake Engineering, 2014, 12, 1007-1024.	2.3	21
187	Improvement of historic reinforced concrete/mortars by impregnation and electrochemical methods. Cement and Concrete Composites, 2014, 49, 50-58.	4.6	38
188	Seismic vulnerability assessment of masonry facade walls: development, application and validation of a new scoring method. Structural Engineering and Mechanics, 2014, 50, 541-561.	1.0	47
189	EXPERIMENTAL AND NUMERICAL STUDY OF RC COLUMNS UNDER BIAXIAL LOADING: AS BUILT. , 2014, , .		1
190	EVALUATION OF DAMAGE IN REINFORCED CONCRETE COLUMNS UNDER BIAXIAL LOADING. , 2014, , .		1
191	Experimental evaluation of rectangular reinforced concrete column behaviour under biaxial cyclic loading. Earthquake Engineering and Structural Dynamics, 2013, 42, 239-259.	2.5	93
192	Behaviour of reinforced concrete column under biaxial cyclic loading—state of the art. International Journal of Advanced Structural Engineering, 2013, 5, 4.	1.3	36
193	Seismic response of current RC buildings in Nepal: A comparative analysis of different design/construction. Engineering Structures, 2013, 49, 284-294.	2.6	42
194	Importance of the bond–slip mechanism in the numerical simulation of the cyclic response of RC elements with plain reinforcing bars. Engineering Structures, 2013, 56, 396-406.	2.6	26
195	ELEVATED WATER RESERVOIR MONITORING USING OPTICAL FIBER ACCELEROMETER. Instrumentation Science and Technology, 2013, 41, 125-134.	0.9	4
196	Field observations and interpretation of the structural performance of constructions after the 11 May 2011 Lorca earthquake. Engineering Failure Analysis, 2013, 34, 670-692.	1.8	114
197	Intensity-Encoded Polymer Optical Fiber Accelerometer. IEEE Sensors Journal, 2013, 13, 1716-1720.	2.4	30
198	Failure analysis of bilge keels and its design improvement. Engineering Failure Analysis, 2013, 27, 232-249.	1.8	4

#	Article	IF	CITATIONS
199	Damage evolution in reinforced concrete columns subjected to biaxial loading. Bulletin of Earthquake Engineering, 2013, 11, 1517-1540.	2.3	40
200	Seismic vulnerability assessment of historical urban centres: case study of the old city centre in Seixal, Portugal. Bulletin of Earthquake Engineering, 2013, 11, 1753-1773.	2.3	111
201	Comparative Analysis of RC Irregular Buildings Designed According to Different Seismic Design Codes. Open Construction and Building Technology Journal, 2013, 7, 221-229.	0.3	10
202	Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors. Sensors, 2012, 12, 6629-6644.	2.1	22
203	Displacement-Based Fragility Curves for Seismic Assessment of Adobe Buildings in Cusco, Peru. Earthquake Spectra, 2012, 28, 759-794.	1.6	35
204	BEHAVIOR OF RC BUILDING COLUMNS UNDER CYCLIC LOADING: EXPERIMENTAL STUDY. Journal of Earthquake and Tsunami, 2012, 06, 1250026.	0.7	6
205	Structural health monitoring of different geometry structures with optical fiber sensors. Photonic Sensors, 2012, 2, 357-365.	2.5	8
206	Biaxial Optical Accelerometer and High-Angle Inclinometer With Temperature and Cross-Axis Insensitivity. IEEE Sensors Journal, 2012, 12, 2399-2406.	2.4	74
207	Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures: Abode wall case study. Measurement: Journal of the International Measurement Confederation, 2012, 45, 1695-1705.	2.5	75
208	Simplified hysteretic model for the representation of the biaxial bending response of RC columns. Engineering Structures, 2012, 44, 146-158.	2.6	25
209	Comparative efficiency analysis of different nonlinear modelling strategies to simulate the biaxial response of RC columns. Earthquake Engineering and Engineering Vibration, 2012, 11, 553-566.	1.1	53
210	A simplified shear model for reinforced concrete elements subjected to reverse lateral loadings. Open Engineering, 2012, 2, 136-145.	0.7	1
211	Performance of masonry enclosure walls: lessons learned from recent earthquakes. Earthquake Engineering and Engineering Vibration, 2012, 11, 23-34.	1.1	88
212	A comparative analysis of energy dissipation and equivalent viscous damping of RC columns subjected to uniaxial and biaxial loading. Engineering Structures, 2012, 35, 149-164.	2.6	78
213	Monitoring of the concrete curing process using plastic optical fibers. Measurement: Journal of the International Measurement Confederation, 2012, 45, 556-560.	2.5	31
214	Dynamic monitoring and numerical modelling of communication towers with FBG based accelerometers. Journal of Constructional Steel Research, 2012, 74, 58-62.	1.7	22
215	Seismic vulnerability assessment and characterisation of the buildings on Faial Island, Azores. Bulletin of Earthquake Engineering, 2012, 10, 27-44.	2.3	58
216	Dynamic monitoring of an elevated water reservoir with a biaxial optical accelerometer. , 2012, , .		3

Dynamic monitoring of an elevated water reservoir with a biaxial optical accelerometer. , 2012, , . 216

#	Article	IF	CITATIONS
217	Comparative structural response of two steel bridges constructed 100 years apart. Structure and Infrastructure Engineering, 2011, 7, 843-855.	2.0	11
218	Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bulletin of Earthquake Engineering, 2011, 9, 1067-1096.	2.3	205
219	Uniaxial fiber Bragg grating accelerometer system with temperature and cross axis insensitivity. Measurement: Journal of the International Measurement Confederation, 2011, 44, 55-59.	2.5	75
220	Two roofs of recent public buildings, the same technological failure. Engineering Failure Analysis, 2011, 18, 811-817.	1.8	11
221	Numerical modelling of the cyclic behaviour of RC elements built with plain reinforcing bars. Engineering Structures, 2011, 33, 273-286.	2.6	60
222	Dynamic characterization of a radio communication tower with a FBG based accelerometer. , 2011, , .		1
223	Evaluation of Strengthening Techniques of Traditional Masonry Buildings: Case Study of a Four-Building Aggregate. Journal of Performance of Constructed Facilities, 2011, 25, 202-216.	1.0	35
224	Optical Sensors Based on Fiber Bragg Gratings for Structural Health Monitoring. Lecture Notes in Electrical Engineering, 2011, , 253-295.	0.3	18
225	A mechanical model for the seismic vulnerability assessment of old masonry buildings. Earthquake and Structures, 2011, 2, 25-42.	1.0	59
226	Cyclic behavior of a two-span RC beam built with plain reinforcing bars. Periodica Polytechnica: Civil Engineering, 2011, 55, 21.	0.6	8
227	Simplified Macro-Model for Infill Masonry Panels. Journal of Earthquake Engineering, 2010, 14, 390-416.	1.4	126
228	Optical Fiber Accelerometer System for Structural Dynamic Monitoring. IEEE Sensors Journal, 2009, 9, 1347-1354.	2.4	126
229	A non-linear masonry infill macro-model to represent the global behaviour of buildings under cyclic loading. International Journal of Mechanics and Materials in Design, 2008, 4, 123-135.	1.7	26
230	Weldable fibre Bragg grating sensors for steel bridge monitoring. Measurement Science and Technology, 2008, 19, 125305.	1.4	30
231	Structural Health Monitoring of the Church of Santa Casa da MisericÓrdia of Aveiro Using FBG Sensors. IEEE Sensors Journal, 2008, 8, 1236-1242.	2.4	69
232	Integrated Graphical Environment for Support Nonlinear Dynamic Software for the Analysis of Plane Frames. International Journal of Simulation Modelling, 2007, 6, 102-113.	0.6	0
233	Structural health monitoring of the church of Santa Casa da Misericordia of Aveiro using FBG sensors. Proceedings of SPIE, 2007, , .	0.8	3
234	Nondestructive Techniques for the Assessment and Preservation of Historic Structures. , 0, , .		6

#	Article	IF	CITATIONS
235	Strategies to Support Facility Management Resourcing Building Information Modelling. , 0, , .		1
236	Seismic Evaluation of Old Masonry Buildings: Performance and Strengthening. , 0, , .		0