Suying Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/783822/publications.pdf Version: 2024-02-01

SUVINC XU

#	Article	IF	CITATIONS
1	<i>In Situ</i> Fabrication of Nanoprobes for ¹⁹ F Magnetic Resonance and Photoacoustic Imaging-Guided Tumor Therapy. Analytical Chemistry, 2022, 94, 5317-5324.	6.5	3
2	Reducing Valence States of Co Active Sites in a Singleâ€Atom Nanozyme for Boosted Tumor Therapy. Advanced Functional Materials, 2022, 32, .	14.9	47
3	Nanoplatforms with synergistic redox cycles and rich defects for activatable image-guided tumor-specific therapy. CheM, 2022, 8, 2498-2513.	11.7	22
4	Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coordination Chemistry Reviews, 2021, 428, 213609.	18.8	31
5	¹⁹ F-Grafted Fluorescent Carbonized Polymer Dots for Dual-Mode Imaging. Analytical Chemistry, 2021, 93, 13880-13885.	6.5	9
6	Selective Ligand Sensitization of Lanthanide Nanoparticles for Multilevel Information Encryption with Excellent Durability. Analytical Chemistry, 2021, 93, 14317-14322.	6.5	6
7	Intratumoral Glutathione Activatable Nanoprobes for Fluorescence and ¹⁹ F Magnetic Resonance Turn-On Imaging. Analytical Chemistry, 2020, 92, 15679-15684.	6.5	25
8	Gas Foaming Guided Fabrication of 3D Porous Plasmonic Nanoplatform with Broadband Absorption, Tunable Shape, Excellent Stability, and High Photothermal Efficiency for Solar Water Purification. Advanced Functional Materials, 2020, 30, 2003995.	14.9	90
9	Fluorinated ZnFe ^{III} Hollow Metal–Organic Framework as a ¹⁹ F NMR Probe for Highly Sensitive and Selective Detection of Hydrogen Sulfide. ACS Omega, 2020, 5, 8373-8379.	3.5	7
10	Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 16-22.	3.9	25
11	¹⁹ F MRI Nanoprobes for the Turn-On Detection of Phospholipase A2 with a Low Background. Analytical Chemistry, 2019, 91, 8147-8153.	6.5	28
12	Solvent Tailored Strategy for Synthesis of Ultrasmall Ag ₂ S Quantum Dots with Near-Infrared-II Luminescence. Journal of Nanoscience and Nanotechnology, 2019, 19, 4549-4555.	0.9	6
13	Regulating locations of active sites: a novel strategy to greatly improve the stability of PtAu electrocatalysts. Chemical Communications, 2019, 55, 13602-13605.	4.1	8
14	A Versatile Strategy for Surface Functionalization of Hydrophobic Nanoparticle by Boronic Acid Modified Polymerizable Diacetylene Derivatives. Frontiers in Chemistry, 2019, 7, 734.	3.6	3
15	Embedding Nanocluster in MOF via Crystalline Ion-Triggered Growth Strategy for Improved Emission and Selective Sensing. ACS Applied Materials & Interfaces, 2018, 10, 16059-16065.	8.0	64
16	Fluorine Grafted Cu ₇ S ₄ –Au Heterodimers for Multimodal Imaging Guided Photothermal Therapy with High Penetration Depth. Journal of the American Chemical Society, 2018, 140, 5890-5894.	13.7	125
17	Full-Range pH Stable Au-Clusters in Nanogel for Confinement-Enhanced Emission and Improved Sulfide Sensing in Living Cells. Analytical Chemistry, 2018, 90, 3270-3275.	6.5	78
18	Exploration of photothermal sensors based on photothermally responsive materials: a brief review. Inorganic Chemistry Frontiers, 2018, 5, 751-759.	6.0	45

Suying Xu

#	Article	IF	CITATIONS
19	A visual photothermal paper sensor for H2S recognition through rational modulation LSPR wavelength of plasmonics. Science China Chemistry, 2018, 61, 368-374.	8.2	12
20	Organic Nanoprobes for Fluorescence and ¹⁹ F Magnetic Resonance Dualâ€Modality Imaging. Chinese Journal of Chemistry, 2018, 36, 25-30.	4.9	12
21	A pH-responsive nanoprobe for turn-on ¹⁹ F-magnetic resonance imaging. Chemical Communications, 2018, 54, 9853-9856.	4.1	45
22	Multifunctional nanoprobes for both fluorescence and ¹⁹ F magnetic resonance imaging. Nanoscale, 2017, 9, 7163-7168.	5.6	27
23	Plasmonâ€Enhanced Photoelectrical Hydrogen Evolution on Monolayer MoS ₂ Decorated Cu _{1.75} Sâ€Au Nanocrystals. Small, 2017, 13, 1602235.	10.0	34
24	Monolayer MoS2 decorated Cu7S4-Au nanocatalysts for sensitive and selective detection of mercury(II). Science China Materials, 2017, 60, 352-360.	6.3	18
25	Ultrasmall Cu ₇ S ₄ @MoS ₂ Heteroâ€Nanoframes with Abundant Active Edge Sites for Ultrahighâ€Performance Hydrogen Evolution. Angewandte Chemie, 2016, 128, 6612-6615.	2.0	14
26	Superfluorinated copper sulfide nanoprobes for simultaneous 19F magnetic resonance imaging and photothermal ablation. Nano Research, 2016, 9, 1630-1638.	10.4	21
27	Photothermo-responsive Cu7S4@polymer nanocarriers with small sizes and high efficiency for controlled chemo/photothermo therapy. Science China Materials, 2016, 59, 254-264.	6.3	11
28	A General and Facile Strategy to Fabricate Multifunctional Nanoprobes for Simultaneous 19F Magnetic Resonance Imaging, Optical/Thermal Imaging, and Photothermal Therapy. ACS Applied Materials & Interfaces, 2016, 8, 22830-22838.	8.0	24
29	Highly efficient PdCu3 nanocatalysts for Suzuki–Miyaura reaction. Nano Research, 2016, 9, 2912-2920.	10.4	29
30	Surface plasmon resonance-enhanced photothermal nanosensor for sensitive and selective visual detection of 2,4,6-trinitrotoluene. Sensors and Actuators B: Chemical, 2016, 237, 224-229.	7.8	29
31	Solar-driven broad spectrum fungicides based on monodispersed Cu ₇ S ₄ nanorods with strong near-infrared photothermal efficiency. RSC Advances, 2016, 6, 103930-103937.	3.6	12
32	Bifunctional nanocapsules for magnetic resonance imaging and photodynamic therapy. RSC Advances, 2016, 6, 104731-104734.	3.6	4
33	Ultrasmall Cu ₇ S ₄ @MoS ₂ Heteroâ€Nanoframes with Abundant Active Edge Sites for Ultrahighâ€Performance Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 6502-6505.	13.8	128
34	Oneâ€₽ot Aqueous Synthesis of Highly Biocompatible Near Infrared CuInS ₂ Quantum Dots for Target Cell Imaging. Chinese Journal of Chemistry, 2016, 34, 576-582.	4.9	23
35	Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging. Analytical Chemistry, 2016, 88, 7853-7857.	6.5	45
36	Ultrahigh ¹⁹ F Loaded Cu _{1.75} S Nanoprobes for Simultaneous ¹⁹ F Magnetic Resonance Imaging and Photothermal Therapy. ACS Nano, 2016, 10, 1355-1362.	14.6	82

SUYING XU

#	Article	IF	CITATIONS
37	Recent developments of low-toxicity NIR II quantum dots for sensing and bioimaging. TrAC - Trends in Analytical Chemistry, 2016, 80, 149-155.	11.4	75
38	A facile strategy for the synthesis of monodispersed W ₁₇ O ₄₇ nanoneedles. RSC Advances, 2016, 6, 29378-29382.	3.6	6
39	A Fluorescent Chemodosimeter for Live-Cell Monitoring of Aqueous Sulfides. Analytical Chemistry, 2016, 88, 1434-1439.	6.5	54
40	Upconversion luminescence tracking of gene delivery via multifunctional nanocapsules. Talanta, 2016, 150, 118-124.	5.5	25
41	Cu ₇ S ₄ Nanosuperlattices with Greatly Enhanced Photothermal Efficiency. Small, 2015, 11, 4183-4190.	10.0	85
42	Highly Efficient Photothermal Semiconductor Nanocomposites for Photothermal Imaging of Latent Fingerprints. Analytical Chemistry, 2015, 87, 11592-11598.	6.5	55
43	Simultaneous detection of hydrogen peroxide and glucose in human serum with upconversion luminescence. Biosensors and Bioelectronics, 2015, 68, 204-209.	10.1	104
44	Fluorescent Nanosensors via Photoinduced Polymerization of Hydrophobic Inorganic Quantum Dots for the Sensitive and Selective Detection of Nitroaromatics. Analytical Chemistry, 2015, 87, 2383-2388.	6.5	57
45	pH-responsive cocktail drug nanocarriers by encapsulating paclitaxel with doxorubicin modified poly(amino acid). RSC Advances, 2015, 5, 43148-43154.	3.6	11
46	Polyaniline-Based Photothermal Paper Sensor for Sensitive and Selective Detection of 2,4,6-Trinitrotoluene. Analytical Chemistry, 2015, 87, 5451-5456.	6.5	84
47	Cu _{2â^'x} S/graphene oxide nanocomposites for efficient photocatalysis driven by real sunlight. RSC Advances, 2015, 5, 94375-94379.	3.6	10
48	Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Research, 2015, 8, 4038-4047.	10.4	52
49	One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition Abilities for visualization fluorescence enhancement detection of E. coli. Talanta, 2015, 134, 54-59.	5.5	67
50	Design of novel fluorinated probes for versatile surface functionalization and 19F magnetic resonance imaging. Chemistry - an Asian Journal, 0, , .	3.3	2