
Giorgio Raimondi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7838186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunoregulatory functions of mTOR inhibition. Nature Reviews Immunology, 2009, 9, 324-337.	22.7	744
2	Rapamycin-Conditioned Dendritic Cells Are Poor Stimulators of Allogeneic CD4+ T Cells, but Enrich for Antigen-Specific Foxp3+ T Regulatory Cells and Promote Organ Transplant Tolerance. Journal of Immunology, 2007, 178, 7018-7031.	0.8	390
3	Regulated Compartmentalization of Programmed Cell Death-1 Discriminates CD4+CD25+ Resting Regulatory T Cells from Activated T Cells. Journal of Immunology, 2006, 176, 2808-2816.	0.8	156
4	Low TLR4 Expression by Liver Dendritic Cells Correlates with Reduced Capacity to Activate Allogeneic T Cells in Response to Endotoxin. Journal of Immunology, 2005, 174, 2037-2045.	0.8	146
5	"Alternatively Activated―Dendritic Cells Preferentially Secrete IL-10, Expand Foxp3+CD4+ T Cells, and Induce Long-Term Organ Allograft Survival in Combination with CTLA4-Ig. Journal of Immunology, 2006, 177, 5868-5877.	0.8	144
6	High PD-L1/CD86 Ratio on Plasmacytoid Dendritic Cells Correlates With Elevated T-Regulatory Cells in Liver Transplant Tolerance. Transplantation, 2008, 85, 369-377.	1.0	139
7	Mammalian Target of Rapamycin Inhibition and Alloantigen-Specific Regulatory T Cells Synergize To Promote Long-Term Graft Survival in Immunocompetent Recipients. Journal of Immunology, 2010, 184, 624-636.	0.8	93
8	IL-27 Production and STAT3-Dependent Upregulation of B7-H1 Mediate Immune Regulatory Functions of Liver Plasmacytoid Dendritic Cells. Journal of Immunology, 2012, 188, 5227-5237.	0.8	92
9	Donor age negatively affects the immunoregulatory properties of both adipose and bone marrow derived mesenchymal stem cells. Transplant Immunology, 2014, 30, 122-127.	1.2	81
10	Rapamycin-conditioned, alloantigen-pulsed dendritic cells promote indefinite survival of vascularized skin allografts in association with T regulatory cell expansion. Transplant Immunology, 2008, 18, 307-318.	1.2	79
11	Controlled release formulations of IL-2, TGF-β1 and rapamycin for the induction of regulatory T cells. Journal of Controlled Release, 2012, 159, 78-84.	9.9	79
12	Selective Expansion of Allogeneic Regulatory T Cells by Hepatic Stellate Cells: Role of Endotoxin and Implications for Allograft Tolerance. Journal of Immunology, 2012, 188, 3667-3677.	0.8	70
13	Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells. PLoS ONE, 2012, 7, e49700.	2.5	69
14	Naturally Occurring Regulatory T Cells: Recent Insights in Health and Disease. Critical Reviews in Immunology, 2007, 27, 61-95.	0.5	68
15	Endotoxin modulates the capacity of CpGâ€activated liver myeloid DC to direct Th1â€type responses. European Journal of Immunology, 2006, 36, 2483-2493.	2.9	59
16	Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells. Journal of Hepatology, 2008, 49, 1008-1018.	3.7	59
17	Bioinspired Controlled Release of CCL22 Recruits Regulatory T Cells In Vivo. Advanced Materials, 2012, 24, 4735-4738.	21.0	49
18	Induced regulatory T cells: mechanisms of conversion and suppressive potential. Human Immunology, 2012, 73, 328-334.	2.4	46

GIORGIO RAIMONDI

#	Article	IF	CITATIONS
19	Persistent Infection by HSV-1 Is Associated With Changes in Functional Architecture of iPSC-Derived Neurons and Brain Activation Patterns Underlying Working Memory Performance. Schizophrenia Bulletin, 2015, 41, 123-132.	4.3	44
20	Dendritic Cells,Tolerance and Therapy of Organ Allograft Rejection. , 2004, 146, 105-120.		29
21	Induction of Peripheral T Cell Tolerance by Antigen-Presenting B Cells. II. Chronic Antigen Presentation Overrules Antigen-Presenting B Cell Activation. Journal of Immunology, 2006, 176, 4021-4028.	0.8	29
22	Tolerogenic Dendritic Cell-Regulatory T-cell Interaction and the Promotion of Transplant Tolerance. Transplantation, 2009, 87, S86-S90.	1.0	28
23	All-trans retinoic acid and rapamycin synergize with transforming growth factor-β1 to induce regulatory T cells but confer different migratory capacities. Journal of Leukocyte Biology, 2013, 94, 981-989.	3.3	25
24	Induction of Peripheral T Cell Tolerance by Antigen-Presenting B Cells. I. Relevance of Antigen Presentation Persistence. Journal of Immunology, 2006, 176, 4012-4020.	0.8	24
25	The Use of Luminex Assays to Measure Cytokines. Journal of Investigative Dermatology, 2015, 135, 1-5.	0.7	24
26	Exploring cell-based tolerance strategies for hand and face transplantation. Expert Review of Clinical Immunology, 2015, 11, 1189-1204.	3.0	22
27	Mechanisms of rejection in vascular composite allotransplantation. Current Opinion in Organ Transplantation, 2018, 23, 28-33.	1.6	17
28	Jakinibs of All Trades: Inhibiting Cytokine Signaling in Immune-Mediated Pathologies. Pharmaceuticals, 2022, 15, 48.	3.8	16
29	Multiphase Assembly of Small Molecule Microcrystalline Peptide Hydrogel Allows Immunomodulatory Combination Therapy for Longâ€Term Heart Transplant Survival. Small, 2020, 16, e2002791.	10.0	15
30	Orthotopic Hind Limb Transplantation in the Mouse. Journal of Visualized Experiments, 2016, , 53483.	0.3	13
31	Type-I Interferons Inhibit Interleukin-10 Signaling and Favor Type 1 Diabetes Development in Nonobese Diabetic Mice. Frontiers in Immunology, 2018, 9, 1565.	4.8	13
32	Rhesus Monkey Immature Monocyte-Derived Dendritic Cells Generate Alloantigen-Specific Regulatory T Cells From Circulating CD4+CD127â^'/lo T Cells. Transplantation, 2009, 88, 1057-1064.	1.0	11
33	Vascularized composite allotransplantation combined with costimulation blockade induces mixed chimerism and reveals intrinsic tolerogenic potential. JCI Insight, 2020, 5, .	5.0	11
34	Desensitization and Prevention of Antibody-Mediated Rejection in Vascularized Composite Allotransplantation by Syngeneic Hematopoietic Stem Cell Transplantation. Transplantation, 2018, 102, 593-600.	1.0	10
35	Frontiers of Immunological Tolerance. Methods in Molecular Biology, 2007, 380, 1-24.	0.9	10
36	Taming inflammation by targeting cytokine signaling: new perspectives in the induction of transplantation tolerance. Immunotherapy, 2014, 6, 637-653.	2.0	8

GIORGIO RAIMONDI

#	Article	IF	CITATIONS
37	Solid Lipid Nanoparticles (SLNs) for Intracellular Targeting Applications. Journal of Visualized Experiments, 2015, , .	0.3	8
38	A Novel mTORC1-Dependent, Akt-Independent Pathway Differentiates the Gut Tropism of Regulatory and Conventional CD4 T Cells. Journal of Immunology, 2016, 197, 1137-1147.	0.8	8
39	A short course of tofacitinib sustains the immunoregulatory effect of CTLA4-Ig in the presence of inflammatory cytokines and promotes long-term survival of murine cardiac allografts. American Journal of Transplantation, 2021, 21, 2675-2687.	4.7	5
40	Autoreactive isotype-specific T cells determine B cell frequency. European Journal of Immunology, 2001, 31, 215-224.	2.9	4
41	The outstanding questions in transplantation: It's about time…. American Journal of Transplantation, 2018, 18, 271-272.	4.7	3
42	Combining Theoretical and Experimental Techniques to Study Murine Heart Transplant Rejection. Frontiers in Immunology, 2016, 7, 448.	4.8	2
43	Editorial: Transplant Rejection and Tolerance—Advancing the Field through Integration of Computational and Experimental Investigation. Frontiers in Immunology, 2017, 8, 616.	4.8	1
44	Ex vivo Expanded Regulatory T cells Combined with Short-term Costimulation Blockade Prevent Rejection of Vascularized Composite Allografts. Transplantation, 2018, 102, S200.	1.0	0
45	Donor T Cells Undermine the Protective Effect of DST + anti-CD154 in Transplant Rejection Transplantation, 2018, 102, S294.	1.0	0
46	Modeling the Potential of Treg-Based Therapies for Transplant Rejection: Effect of Dose, Timing, and Accumulation Site. Transplant International, 2022, 35, 10297.	1.6	0