
Olga Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/783777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunology, 2011, 4, 448-455.	6.0	114
2	Proinflammatory cytokines tumor necrosis factor-α and interferon-Î ³ alter tight junction structure and function in the rat parotid gland Par-C10 cell line. American Journal of Physiology - Cell Physiology, 2008, 295, C1191-C1201.	4.6	103
3	Resolvin D1 prevents TNF-α-mediated disruption of salivary epithelial formation. American Journal of Physiology - Cell Physiology, 2012, 302, C1331-C1345.	4.6	80
4	Interleukinâ€1β enhances nucleotideâ€induced and αâ€secretaseâ€dependent amyloid precursor protein processing in rat primary cortical neurons via upâ€regulation of the P2Y ₂ receptor. Journal of Neurochemistry, 2009, 109, 1300-1310.	3.9	61
5	Tight Junctions in Salivary Epithelium. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-13.	3.0	54
6	Comparing human and mouse salivary glands: A practice guide for salivary researchers. Oral Diseases, 2019, 25, 403-415.	3.0	53
7	Rat Parotid Gland Cell Differentiation in Three-Dimensional Culture. Tissue Engineering - Part C: Methods, 2010, 16, 1135-1144.	2.1	51
8	ALX/FPR2 receptor for RvD1 is expressed and functional in salivary glands. American Journal of Physiology - Cell Physiology, 2014, 306, C178-C185.	4.6	46
9	P2Y2 Nucleotide Receptors Mediate Metalloprotease-dependent Phosphorylation of Epidermal Growth Factor Receptor and ErbB3 in Human Salivary Gland Cells. Journal of Biological Chemistry, 2010, 285, 7545-7555.	3.4	45
10	Current trends in salivary gland tight junctions. Tissue Barriers, 2016, 4, e1162348.	3.2	43
11	Current cell models for bioengineering a salivary gland: a miniâ€review of emerging technologies. Oral Diseases, 2013, 19, 236-244.	3.0	37
12	P2Y2 nucleotide receptor activation up-regulates vascular cell adhesion molecular-1 expression and enhances lymphocyte adherence to a human submandibular gland cell line. Molecular Immunology, 2008, 45, 65-75.	2.2	35
13	Laminin-111 Peptides Conjugated to Fibrin Hydrogels Promote Formation of Lumen Containing Parotid Gland Cell Clusters. Biomacromolecules, 2016, 17, 2293-2301.	5.4	32
14	L1 Peptide–Conjugated Fibrin Hydrogels Promote Salivary Gland Regeneration. Journal of Dental Research, 2017, 96, 798-806.	5.2	32
15	PKCαβγ- and PKCδ-dependent endocytosis of NBCe1-A and NBCe1-B in salivary parotid acinar cells. American Journal of Physiology - Cell Physiology, 2009, 297, C1409-C1423.	4.6	29
16	Lipoxin A ₄ inhibits immune cell binding to salivary epithelium and vascular endothelium. American Journal of Physiology - Cell Physiology, 2012, 302, C968-C978.	4.6	28
17	Growth Factors Polymerized Within Fibrin Hydrogel Promote Amylase Production in Parotid Cells. Tissue Engineering - Part A, 2013, 19, 2215-2225.	3.1	28
18	Stem Cell–Soluble Signals Enhance Multilumen Formation in SMG Cell Clusters. Journal of Dental Research. 2015. 94. 1610-1617.	5.2	28

Olga Baker

#	Article	IF	CITATIONS
19	ALX/FPR2 Modulates Anti-Inflammatory Responses in Mouse Submandibular Gland. Scientific Reports, 2016, 6, 24244.	3.3	27
20	Aspirin Triggered Resolvin D1 reduces inflammation and restores saliva secretion in a Sjögren's syndrome mouse model. Rheumatology, 2019, 58, 1285-1292.	1.9	26
21	Expression of Resolvin D1 Biosynthetic Pathways in Salivary Epithelium. Journal of Dental Research, 2014, 93, 300-305.	5.2	25
22	Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function. PLoS ONE, 2017, 12, e0187069.	2.5	25
23	Synergistic effects of laminin-1 peptides, VEGF and FGF9 on salivary gland regeneration. Acta Biomaterialia, 2019, 91, 186-194.	8.3	25
24	Understanding Resolvin Signaling Pathways to Improve Oral Health. International Journal of Molecular Sciences, 2013, 14, 5501-5518.	4.1	23
25	AT-RvD1 Promotes Resolution of Inflammation in NOD/ShiLtJ mice. Scientific Reports, 2017, 7, 45525.	3.3	22
26	Post-Irradiated Human Submandibular Glands Display High Collagen Deposition, Disorganized Cell Junctions, and an Increased Number of Adipocytes. Journal of Histochemistry and Cytochemistry, 2016, 64, 343-352.	2.5	20
27	Regulation of inflammation by lipid mediators in oral diseases. Oral Diseases, 2017, 23, 576-597.	3.0	19
28	Zonula Occludens-1, Occludin and E-cadherin Expression and Organization in Salivary Glands with Sjögren's Syndrome. Journal of Histochemistry and Cytochemistry, 2015, 63, 45-56.	2.5	18
29	Using cell sheets to regenerate mouse submandibular glands. Npj Regenerative Medicine, 2019, 4, 16.	5.2	17
30	Differential coupling of the P2Y1 receptor to Gα14 and Cαq/11 proteins during the development of the rat salivary gland. Archives of Oral Biology, 2006, 51, 359-370.	1.8	16
31	The G-Protein–Coupled Receptor ALX/Fpr2 Regulates Adaptive Immune Responses in Mouse Submandibular Glands. American Journal of Pathology, 2018, 188, 1555-1562.	3.8	16
32	NFIB Regulates Embryonic Development of Submandibular Glands. Journal of Dental Research, 2015, 94, 312-319.	5.2	15
33	AT-RvD1 combined with DEX is highly effective in treating TNF- <i>α</i> -mediated disruption of the salivary gland epithelium. Physiological Reports, 2016, 4, e12990.	1.7	15
34	Sexâ€mediated elevation of the specialized proâ€resolving lipid mediator levels in a Sjögren's syndrome mouse model. FASEB Journal, 2020, 34, 7733-7744.	0.5	14
35	Three-dimensional cultures of mouse submandibular and parotid glands: a comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 618-626.	2.7	13
36	The P2Y ₂ Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells. Journal of Biomedical Science and Engineering, 2014, 07, 1105-1121.	0.4	13

Olga Baker

#	Article	IF	CITATIONS
37	Predicting Resolvin D1 Pharmacokinetics in Humans with Physiologicallyâ€Based Pharmacokinetic Modeling. Clinical and Translational Science, 2021, 14, 683-691.	3.1	11
38	Saliva-Microbe Interactions and Salivary Gland Dysfunction. Advances in Dental Research, 2014, 26, 7-14.	3.6	10
39	Trimers Conjugated to Fibrin Hydrogels Promote Salivary Gland Function. Journal of Dental Research, 2021, 100, 268-275.	5.2	10
40	Aspirin-Triggered Resolvin D1 Versus Dexamethasone in the Treatment of Sjögren's Syndrome-Like NOD/ShiLtJ Mice - A Pilot Study. Journal of Rheumatic Diseases and Treatment, 2015, 1, .	0.1	10
41	Characterization of Angiogenesis and Lymphangiogenesis in Human Minor Salivary Glands with Sjögren's Syndrome. Journal of Histochemistry and Cytochemistry, 2015, 63, 340-349.	2.5	8
42	Laminin-1 Peptides Conjugated to Fibrin Hydrogels Promote Salivary Gland Regeneration in Irradiated Mouse Submandibular Glands. Frontiers in Bioengineering and Biotechnology, 2021, 9, 729180.	4.1	7
43	Sex-dependent Regeneration Patterns in Mouse Submandibular Glands. Journal of Histochemistry and Cytochemistry, 2020, 68, 305-318.	2.5	6
44	Specialized pro-resolving receptors are expressed in salivary glands with Sjögren's syndrome. Annals of Diagnostic Pathology, 2022, 56, 151865.	1.3	5
45	Predictive modeling of aspirinâ€ŧriggered resolvin D1 pharmacokinetics for the study of Sjögren's syndrome. Clinical and Experimental Dental Research, 2020, 6, 225-235.	1.9	4
46	Cell Sheets Restore Secretory Function in Wounded Mouse Submandibular Glands. Cells, 2020, 9, 2645.	4.1	4
47	Engineering the mode of morphogenetic signal presentation to promote branching from salivary gland spheroids in 3D hydrogels. Acta Biomaterialia, 2020, 105, 121-130.	8.3	4
48	Neurons Self-Organize Around Salivary Epithelial Cells in Novel Co-Culture Model. Journal of Stem Cell and Regenerative Biology, 2016, 2, 1-6.	0.2	4
49	SPM Receptor Expression and Localization in Irradiated Salivary Glands. Journal of Histochemistry and Cytochemistry, 2021, 69, 523-534.	2.5	1
50	Current Cell Models for Bioengineering Salivary Glands. , 2017, , 133-144.		1
51	Early Dry Eye Disease Onset in a NOD.H-2 ^{h4} Mouse Model of Sjögren's Syndrome. , 2022, 63, 18		1