
Peter SurovÃ¹/₂

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/783756/publications.pdf Version: 2024-02-01

DETED SUDOVÃ1/2

#	Article	IF	CITATIONS
1	Individual Tree Identification in ULS Point Clouds Using a Crown Width Mixed-Effects Model Based on NFI Data. Remote Sensing, 2022, 14, 926.	4.0	1
2	Effects, Monitoring and Management of Forest Roads Using Remote Sensing and GIS in Angolan Miombo Woodlands. Forests, 2022, 13, 524.	2.1	6
3	Influence of water supply on cork increment and quality in <i>Quercus suber</i> L. Central European Forestry Journal, 2022, 68, 3-14.	0.8	5
4	A Cork Cell Wall Approach to Swelling and Boiling with ESEM Technology. Forests, 2022, 13, 623.	2.1	1
5	Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 32-71.	9.6	19
6	Young Silver Birch Grows Faster and Allocates Higher Portion of Biomass into Stem Than Norway Spruce, a Case Study from a Post-Disturbance Forest. Forests, 2021, 12, 433.	2.1	7
7	Spatial resolution of unmanned aerial vehicles acquired imagery as a result of different processing conditions. Central European Forestry Journal, 2021, 67, 148-154.	0.8	2
8	Mathematically optimized trajectory for terrestrial close-range photogrammetric 3D reconstruction of forest stands. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, 259-281.	11.1	8
9	Aplicação dos Modelos de Interação Atmosférica e de Incêndio Florestal BRAMS-SFIRE no sul de Portugal. Revista Brasileira De Meteorologia, 2021, 36, 423-440.	0.5	2
10	A review of major factors influencing the accuracy of mapping green-attack stage of bark beetle infestations using satellite imagery: Prospects to avoid data redundancy. Remote Sensing Applications: Society and Environment, 2021, 24, 100638.	1.5	8
11	Temperature buffering in temperate forests: Comparing microclimate models based on ground measurements with active and passive remote sensing. Remote Sensing of Environment, 2021, 263, 112522.	11.0	21
12	Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102512.	2.8	26
13	Cork influenced by a specific water regime—macro and microstructure characterization: the first approach. Wood Science and Technology, 2021, 55, 1653-1672.	3.2	4
14	Woody and Foliage Biomass, Foliage Traits and Growth Efficiency in Young Trees of Four Broadleaved Tree Species in a Temperate Forest. Plants, 2021, 10, 2155.	3.5	8
15	Investigating the Correlation between Multisource Remote Sensing Data for Predicting Potential Spread of Ips typographus L. Spots in Healthy Trees. Remote Sensing, 2021, 13, 4953.	4.0	5
16	UAV Laser Scans Allow Detection of Morphological Changes in Tree Canopy. Remote Sensing, 2020, 12, 3829.	4.0	6
17	Comparison of Ips cembrae (Coleoptera: Curculionidae) Capture Methods: Small Trap Trees Caught the Most Beetles. Forests, 2020, 11, 1275.	2.1	5
18	The Influence of Cross-Section Thickness on Diameter at Breast Height Estimation from Point Cloud. ISPRS International Journal of Geo-Information, 2020, 9, 495.	2.9	7

Peter SurovÃ1/2

#	Article	IF	CITATIONS
19	Biomass Allocation into Woody Parts and Foliage in Young Common Aspen (Populus tremula L.)—Trees and a Stand-Level Study in the Western Carpathians. Forests, 2020, 11, 464.	2.1	8
20	Very High Density Point Clouds from UAV Laser Scanning for Automatic Tree Stem Detection and Direct Diameter Measurement. Remote Sensing, 2020, 12, 1236.	4.0	56
21	Silver birch aboveground biomass allocation pattern, stem and foliage traits with regard to intraspecific crown competition. LesnAcky AŒasopis, 2020, 66, 159-169.	0.8	3
22	Simple Is Best: Pine Twigs Are Better Than Artificial Lures for Trapping of Pine Weevils in Pitfall Traps. Forests, 2019, 10, 642.	2.1	9
23	The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle Infestation. Remote Sensing, 2019, 11, 1561.	4.0	75
24	Terrestrial Structure from Motion Photogrammetry for Deriving Forest Inventory Data. Remote Sensing, 2019, 11, 950.	4.0	82
25	UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas?. Remote Sensing, 2019, 11, 721.	4.0	126
26	Acquisition of Forest Attributes for Decision Support at the Forest Enterprise Level Using Remote-Sensing Techniques—A Review. Forests, 2019, 10, 273.	2.1	32
27	Defining Deforestation Patterns Using Satellite Images from 2000 and 2017: Assessment of Forest Management in Miombo Forests—A Case Study of Huambo Province in Angola. Sustainability, 2019, 11, 98.	3.2	13
28	Vocal recognition of a nest-predator in black grouse. PeerJ, 2019, 7, e6533.	2.0	7
29	Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands. Geo-Spatial Information Science, 2018, 21, 12-20.	5.3	73
30	Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. International Journal of Remote Sensing, 2018, 39, 4786-4800.	2.9	64
31	Value Chain of Charcoal Production and Implications for Forest Degradation: Case Study of Bié Province, Angola. Environments - MDPI, 2018, 5, 113.	3.3	24
32	Mapping Forest Structure Using UAS inside Flight Capabilities. Sensors, 2018, 18, 2245.	3.8	32
33	UAV Capability to Detect and Interpret Solar Radiation as a Potential Replacement Method to Hemispherical Photography. Remote Sensing, 2018, 10, 423.	4.0	8
34	Dynamic Patterns of Trees Species in Miombo Forest and Management Perspectives for Sustainable Production—Case Study in Huambo Province, Angola. Forests, 2018, 9, 321.	2.1	17
35	Estimation and Extrapolation of Tree Parameters Using Spectral Correlation between UAV and PI©iades Data. Forests, 2018, 9, 85.	2.1	30
36	Evaluation of Close-Range Photogrammetry Image Collection Methods for Estimating Tree Diameters. ISPRS International Journal of Geo-Information, 2018, 7, 93.	2.9	76

Peter SurovÃ¹/2

#	Article	IF	CITATIONS
37	Advances in remote-sensing applications in silvo-pastoral systems. International Journal of Remote Sensing, 2018, 39, 4565-4571.	2.9	3
38	Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing, 2017, 38, 2392-2410.	2.9	235
39	Prediction of Dominant Forest Tree Species Using QuickBird and Environmental Data. Forests, 2017, 8, 42.	2.1	22
40	Forest Stand Inventory Based on Combined Aerial and Terrestrial Close-Range Photogrammetry. Forests, 2016, 7, 165.	2.1	98
41	Accuracy of Reconstruction of the Tree Stem Surface Using Terrestrial Close-Range Photogrammetry. Remote Sensing, 2016, 8, 123.	4.0	54
42	ESTIMATION OF CORK PRODUCTION USINGAERIAL IMAGERY1. Revista Arvore, 2015, 39, 853-861.	0.5	1
43	The effect of soil compaction at different depths on cork oak seedling growth. New Forests, 2015, 46, 235-246.	1.7	14
44	Observations on 3-dimensional crown growth of Stone pine. Agroforestry Systems, 2011, 82, 105-110.	2.0	11
45	Economic implications of different cork oak forest management systems. International Journal of Sustainable Society, 2008, 1, 149.	0.1	15
46	Modeling Cork Oak Production in Portugal. , 2006, , 285-313.		19
47	Detection of fallen logs from high-resolution UAV images. New Zealand Journal of Forestry Science, 0, 49, .	0.8	13
48	Adaptive Management on Sustainability of Cork Oak Woodlands. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 437-449.	0.4	12