Susan L Ingram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7837532/publications.pdf Version: 2024-02-01

SUSAN LINCRAM

#	Article	IF	CITATIONS
1	Toward understanding the opioid paradox: cellular mechanisms of opioid-induced hyperalgesia. Neuropsychopharmacology, 2022, 47, 427-428.	5.4	5
2	Untangling Peripheral Sympathetic Neurocircuits. Frontiers in Cardiovascular Medicine, 2022, 9, 842656.	2.4	4
3	Persistent Inflammation Induces Desensitization of the Presynaptic Cannabinoid 1 Receptor in the Ventrolateral Periaqueductal Gray. FASEB Journal, 2022, 36, .	0.5	0
4	Evidence for Cholinergic Collateral Projections between Sympathetic Neurons in the Murine Stellate Ganglia. FASEB Journal, 2022, 36, .	0.5	0
5	Amphetamines signal through intracellular TAAR1 receptors coupled to Gα13 and GαS in discrete subcellular domains. Molecular Psychiatry, 2021, 26, 1208-1223.	7.9	60
6	Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
7	Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Frontiers in Cellular Neuroscience, 2021, 15, 670346.	3.7	25
8	Mice Expressing Regulators of G protein Signaling–insensitive Gαo Define Roles of μ Opioid Receptor Gαo and Gαi Subunit Coupling in Inhibition of Presynaptic GABA Release. Molecular Pharmacology, 2021, 100, 217-223.	2.3	6
9	The ASPET Mentoring Network: Enhancing Diversity and Inclusion through Career Coaching Groups within a Scientific Society. CBE Life Sciences Education, 2020, 19, ar29.	2.3	16
10	Cannabinoids in the descending pain modulatory circuit: Role in inflammation. , 2020, 209, 107495.		23
11	The Brainstem and Nociceptive Modulation. , 2020, , 249-271.		4
12	Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology, 2020, 173, 108131.	4.1	73
13	Neuronal excitatory amino acid transporter EAAT3: Emerging functions in health and disease. Neurochemistry International, 2019, 123, 69-76.	3.8	16
14	Lack of Antinociceptive Cross-Tolerance With Co-Administration of Morphine and Fentanyl Into the Periaqueductal Gray of Male Sprague-Dawley Rats. Journal of Pain, 2019, 20, 1040-1047.	1.4	12
15	Regulators of G-Protein Signaling (RGS) Proteins Promote Receptor Coupling to G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels. Journal of Neuroscience, 2018, 38, 8737-8744.	3.6	24
16	Compensatory Activation of Cannabinoid CB2 Receptor Inhibition of GABA Release in the Rostral Ventromedial Medulla in Inflammatory Pain. Journal of Neuroscience, 2017, 37, 626-636.	3.6	37
17	Amphetamine and Methamphetamine Increase NMDAR-GluN2B Synaptic Currents in Midbrain Dopamine Neurons. Neuropsychopharmacology, 2017, 42, 1539-1547.	5.4	33
18	Optogenetic Evidence for a Direct Circuit Linking Nociceptive Transmission through the Parabrachial Complex with Pain-Modulating Neurons of the Rostral Ventromedial Medulla (RVM). ENeuro, 2017, 4, ENEURO.0202-17.2017.	1.9	48

SUSAN LINGRAM

#	Article	IF	CITATIONS
19	Compensatory Activation of Cannabinoid CB2 Receptor Inhibition of GABA Release in the Rostral Ventromedial Medulla in Inflammatory Pain. Journal of Neuroscience, 2017, 37, 626-636.	3.6	7
20	Sex Differences in GABA _A Signaling in the Periaqueductal Gray Induced by Persistent Inflammation. Journal of Neuroscience, 2016, 36, 1669-1681.	3.6	48
21	Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance. Behavioural Brain Research, 2016, 298, 17-24.	2.2	16
22	GABAergic transmission and enhanced modulation by opioids and endocannabinoids in adult rat rostral ventromedial medulla. Journal of Physiology, 2015, 593, 217-230.	2.9	18
23	Contribution of Adenylyl Cyclase Modulation of Pre- and Postsynaptic GABA Neurotransmission to Morphine Antinociception and Tolerance. Neuropsychopharmacology, 2014, 39, 2142-2152.	5.4	39
24	Amphetamine Modulates Excitatory Neurotransmission through Endocytosis of the Glutamate Transporter EAAT3 in Dopamine Neurons. Neuron, 2014, 83, 404-416.	8.1	93
25	Pain: Novel Analgesics from Traditional Chinese Medicines. Current Biology, 2014, 24, R114-R116.	3.9	13
26	Regulation of <i>µ</i> -Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacological Reviews, 2013, 65, 223-254.	16.0	673
27	Columnar distribution of catecholaminergic neurons in the ventrolateral periaqueductal gray and their relationship to efferent pathways. Synapse, 2013, 67, 94-108.	1.2	32
28	Differential Control of Opioid Antinociception to Thermal Stimuli in a Knock-In Mouse Expressing Regulator of G-Protein Signaling-Insensitive Gα _o Protein. Journal of Neuroscience, 2013, 33, 4369-4377.	3.6	29
29	Amphetamine potentiates NMDA receptor currents in midbrain dopamine neurons. FASEB Journal, 2013, 27, 885.1.	0.5	0
30	Association of Mu-opioid and NMDA Receptors in the Periaqueductal Gray: What Does it Mean for Pain Control?. Neuropsychopharmacology, 2012, 37, 315-316.	5.4	3
31	Differential Development of Antinociceptive Tolerance to Morphine and Fentanyl Is Not Linked to Efficacy in the Ventrolateral Periaqueductal Gray of the Rat. Journal of Pain, 2012, 13, 799-807.	1.4	26
32	A Sensitive Membrane-Targeted Biosensor for Monitoring Changes in Intracellular Chloride in Neuronal Processes. PLoS ONE, 2012, 7, e35373.	2.5	21
33	Subunit dependent modulation of ASIC currents by intracellular pH. FASEB Journal, 2012, 26, 1048.11.	0.5	0
34	Role of increased GABAergic synaptic transmission in morphine tolerance. FASEB Journal, 2012, 26, 843.5.	0.5	0
35	Tolerance to the Antinociceptive Effect of Morphine in the Absence of Short-Term Presynaptic Desensitization in Rat Periaqueductal Gray Neurons. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 674-680.	2.5	49
36	Attenuation of dynaminâ€dependent internalization decreases antinociception during the expression of morphine tolerance. FASEB Journal, 2010, 24, 585.4.	0.5	0

SUSAN LINGRAM

#	Article	IF	CITATIONS
37	Extracellular Signal-Regulated Kinase 1/2 Activation Counteracts Morphine Tolerance in the Periaqueductal Gray of the Rat. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 412-418.	2.5	43
38	Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat. Brain Research, 2009, 1295, 59-66.	2.2	26
39	Contribution of dopamine receptors to periaqueductal gray-mediated antinociception. Psychopharmacology, 2009, 204, 531-540.	3.1	79
40	Role of protein kinase C in functional selectivity for desensitization at the µâ€opioid receptor: from pharmacological curiosity to therapeutic potential. British Journal of Pharmacology, 2009, 158, 154-156.	5.4	16
41	Tolerance to Repeated Morphine Administration Is Associated with Increased Potency of Opioid Agonists. Neuropsychopharmacology, 2008, 33, 2494-2504.	5.4	40
42	Behavioral and Electrophysiological Evidence for Opioid Tolerance in Adolescent Rats. Neuropsychopharmacology, 2007, 32, 600-606.	5.4	35
43	Antinociceptive tolerance revealed by cumulative intracranial microinjections of morphine into the periaqueductal gray in the rat. Pharmacology Biochemistry and Behavior, 2006, 85, 214-219.	2.9	62
44	Dopamine transporter–mediated conductances increase excitability of midbrain dopamine neurons. Nature Neuroscience, 2002, 5, 971-978.	14.8	199
45	Cellular Actions Of Opioids And Other Analgesics: Implications For Synergism In Pain Relief. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 520-523.	1.9	76
46	Cellular and molecular mechanisms of opioid action. Progress in Brain Research, 2000, 129, 483-492.	1.4	7
47	Enhanced Opioid Efficacy in Opioid Dependence Is Caused by an Altered Signal Transduction Pathway. Journal of Neuroscience, 1998, 18, 10269-10276.	3.6	150
48	Actions of the ORL ₁ Receptor Ligand Nociceptin on Membrane Properties of Rat Periaqueductal Gray Neurons <i>In Vitro</i> . Journal of Neuroscience, 1997, 17, 996-1003.	3.6	168
49	Opioid inhibition of Ih via adenylyl cyclase. Neuron, 1994, 13, 179-186.	8.1	155