
Yuanyang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7837489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study on the Hydrophobic Modification of MTES/NH3 Vapor Surface Treatment for SiO2 Broadband Anti-Reflection Coating. Materials, 2022, 15, 912.	1.3	2
2	λ/4–λ/4 Double-Layer Broadband Antireflective Coatings with Constant High Transmittance. Coatings, 2022, 12, 435.	1.2	0
3	Molecular Simulation Study on Electronic Property and Thermal Conductivity of Graphyne/Polypyrrole Composite. Macromolecular Theory and Simulations, 2022, 31, .	0.6	1
4	The Influence of Water Content on the Growth of the Hybrid-Silica Particles by Sol-Gel Method. Silicon, 2021, 13, 3413-3421.	1.8	8
5	Data on flexibility and thermal stability of Polypyrrole-based ternary nanocomposite films. Data in Brief, 2021, 34, 106754.	0.5	1
6	A Palladium Complex as an Asymmetric π-Lewis Base Catalyst for Activating 1,3-Dienes. Journal of the American Chemical Society, 2021, 143, 4809-4816.	6.6	56
7	Novel Hybrid p- and n-Type Organic Thermoelectric Materials Based on Mussel-Inspired Polydopamine. ACS Applied Materials & Interfaces, 2021, 13, 23970-23982.	4.0	23

$_{8}$ Effects of carbon nanomaterials hybridization of Poly(3,4-ethylenedioxythiophene): poly (styrene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

9	Study on TEMPO-Mediated Oxidation of N-Succinyl Chitosan and the Water Retention Property. Molecules, 2020, 25, 4698.	1.7	14
10	Phosphine Catalyzed Enantioselective Cascade Reaction Initiated by Intermolecular Cross Rauhutâ€Currier Reaction of Electronâ€Deficient <i>ortho</i> â€Formyl Styrenes. ChemCatChem, 2020, 12, 5374-5377.	1.8	8
11	Spherical-chain silica with super-hydrophobic surface and ultra-low refractive index for multi-functional broadband antireflective coatings. Solar Energy, 2020, 207, 1222-1230.	2.9	19
12	Modified cinchona alkaloid-catalysed enantioselective [4+4] annulations of cyclobutenones and 1-azadienes. Chemical Communications, 2020, 56, 7257-7260.	2.2	34
13	Remote Friedel–Crafts Reaction with α-Heteroaryl-Substituted Cyclic Ketones via HOMO Activation of Lewis Bases. Organic Letters, 2019, 21, 7554-7557.	2.4	8
14	Sequential Assembly of Morita–Baylis–Hillman Carbonates and Activated <i>ortho</i> -Vinylbenzaldehydes To Construct Chiral Methanobenzo[7]annulenone Frameworks. Organic Letters, 2019, 21, 3310-3313.	2.4	31
15	Asymmetric Barton–Zard Reaction To Access 3-Pyrrole-Containing Axially Chiral Skeletons. ACS Catalysis, 2019, 9, 4374-4381.	5.5	131
16	A Novel pH- and Salt-Responsive N-Succinyl-Chitosan Hydrogel via a One-Step Hydrothermal Process. Molecules, 2019, 24, 4211.	1.7	19
17	Double-layer tri-wavelength hydrophobic antireflective coatings derived from methylated silica nanoparticles and hybrid silica nanoparticles. Journal of Sol-Gel Science and Technology, 2018, 86, 285-292.	1.1	17
18	Preparation of silica coatings with continuously adjustable refractive indices and wettability properties <i>via</i> sol–gel method. RSC Advances, 2018, 8, 6091-6098.	1.7	28

YUANYANG LI

#	Article	IF	CITATIONS
19	Insight into the Organic–Inorganic Hybrid and Microstructure Tailor Mechanism of Sol–Gel ORMOSIL Antireflective Coatings. Journal of Physical Chemistry C, 2018, 122, 596-603.	1.5	31
20	Surface Modification of Sol-Gel Silica Antireflective Coatings by F-PMHS: A Simple Method for Improvement of Amphiphobicity. Coatings, 2018, 8, 57.	1.2	13
21	Thermal-induced durable superhydrophilicity of TiO2 films with ultra-smooth surfaces. Journal of Sol-Gel Science and Technology, 2018, 87, 50-58.	1.1	9
22	Preparation of mechanically stable triple-layer interference broadband antireflective coatings with self-cleaning property by sol–gel technique. RSC Advances, 2017, 7, 14660-14668.	1.7	19
23	A simple method to control the microstructure and properties of sol–gel silica antireflective coatings. RSC Advances, 2017, 7, 31950-31959.	1.7	12
24	Preparation of sponge-like porous SiO ₂ antireflective coatings with excellent environment-resistance by an acid-catalysed sol–gel method. RSC Advances, 2017, 7, 26834-26838.	1.7	16
25	Sol–gel preparation of ultralow refractive index silica coatings with hydroxypropylâ€betaâ€cyclodextrin as porogen. Journal of Applied Polymer Science, 2017, 134, .	1.3	3
26	Rational design of hierarchical macroporous–mesoporous magnesium silicate for highly efficient removal of organic dye and Pb ²⁺ . RSC Advances, 2017, 7, 47225-47234.	1.7	16
27	Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI) Removal. Journal of Materials, 2017, 2017, 1-13.	0.1	5
28	Three-layer tri-wavelength broadband antireflective coatings built from refractive indices controlled silica thin films. Journal of Sol-Gel Science and Technology, 2016, 80, 1-9.	1.1	41
29	Design and sol–gel preparation of a six-layer tri-wavelength ORMOSIL antireflective coating for a high power laser system. RSC Advances, 2016, 6, 31769-31774.	1.7	6
30	Non-supercritical drying sol–gel preparation of superhydrophobic aerogel ORMOSIL thin films with controlled refractive index. Journal of Sol-Gel Science and Technology, 2015, 74, 594-602.	1.1	18
31	Sol–gel preparation of fluoro-containing ORMOSIL antireflective coating with resistance simultaneously to hydrophilic and oleophilic pollutants. Journal of Sol-Gel Science and Technology, 2015, 74, 698-706.	1.1	14
32	Preparation of porous silica films in a binary template system for double-layer broadband antireflective coatings. RSC Advances, 2015, 5, 20365-20370.	1.7	11
33	Preparation of amphoteric <i>N,O</i> â€carboxymethyl hydroxypropyl chitosan by a twoâ€step reaction. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
34	Mechanically stable single-layer mesoporous silica antireflective coating on solar glass. RSC Advances, 2014, 4, 35818-35822.	1.7	36
35	A one-pot sol–gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles. RSC Advances, 2014, 4, 9838.	1.7	41
36	Environment-resistant fluoro-containing antireflective coatings for high-powered laser systems. RSC Advances, 2014, 4, 48872-48875.	1.7	12

YUANYANG LI

#	Article	IF	CITATIONS
37	Photoinduced deformation of hollow nanospheres formed by the self-assembly of amphiphilic random copolymers and small azo molecules. RSC Advances, 2014, 4, 45890-45894.	1.7	9
38	A convenient sol–gel approach to the preparation of nano-porous silica coatings with very low refractive indices. Chemical Communications, 2014, 50, 13813-13816.	2.2	41
39	Sol–Gel Preparation of Hydrophobic Silica Antireflective Coatings with Low Refractive Index by Base/Acid Two-Step Catalysis. ACS Applied Materials & Interfaces, 2014, 6, 11470-11475.	4.0	129
40	Optimization of thermoelectric figure of merit in poly(p-phenylenediamine)/exfoliated graphene nanosheets composites. RSC Advances, 2014, 4, 51558-51568.	1.7	7
41	Sol–gel silica antireflective coating with enhanced abrasion-resistance using polypropylene glycol as porogen. Journal of Sol-Gel Science and Technology, 2014, 71, 291-296.	1.1	15
42	Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Solar Energy Materials and Solar Cells, 2013, 111, 160-164.	3.0	123
43	Study on Synergistic Effect Between Wormlike Micelles and Hydrophobically Modified Poly(acrylic) Tj ETQq1 1 C).784314 1.3	rgBT /Overloc
44	Templateâ€Free Solâ€Gel Preparation of Superhydrophobic ORMOSIL Films for Doubleâ€Wavelength Broadband Antireflective Coatings. Advanced Functional Materials, 2013, 23, 4361-4365.	7.8	115
45	Synthesis and characterization of high molecular weight and low dispersity polystyrene homopolymers by RAFT polymerization. E-Polymers, 2012, 12, .	1.3	3
46	Sol–gel preparation of double-layer tri-wavelength antireflective coating. Journal of Sol-Gel Science and Technology, 2012, 64, 276-281.	1.1	24
47	One-step sol–gel preparation of PDMS–silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings. Journal of Materials Chemistry, 2012, 22, 13132.	6.7	94
48	A simple route to prepare crack-free thick antireflective silica coatings with improved antireflective stability. Materials Letters, 2012, 69, 86-88.	1.3	29
49	Sol–gel preparation of antireflective coatings at 351Ânm with different thickness and improved moisture-resistance. Journal of Sol-Gel Science and Technology, 2011, 58, 340-344.	1.1	20
50	Focus on moisture-resistance and hydrophobicity of SiO2 antireflective film improved by poly(isopropylene oxide) glycerolether. Journal of Sol-Gel Science and Technology, 2011, 60, 11-16.	1.1	6
51	Preparation of antireflective coatings with high transmittance and enhanced abrasion-resistance by a base/acid two-step catalyzed sol–gel process. Solar Energy Materials and Solar Cells, 2011, 95, 2347-2351.	3.0	78
52	Selective oxidation and determination of the substitution pattern of hydroxypropyl guar gum. Carbohydrate Polymers, 2010, 80, 1178-1182.	5.1	25
53	Preparation and characterization of polyvinyl butyral/silica hybrid antireflective coating: effect of PVB on moisture-resistance and hydrophobicity. Journal of Sol-Gel Science and Technology, 2010, 53, 79-84.	1.1	26
54	Determination of the degree of substitution of hydroxypropyl guar gum at C-6 by Pyrolysis-Gas Chromatography spectrometry. Carbohydrate Polymers, 2010, 82, 829-832.	5.1	7

#	Article	IF	CITATIONS
55	A molecular simulation of the compatibility of chitosan and poly(vinyl pyrrolidone). Molecular Simulation, 2010, 36, 186-191.	0.9	10
56	Synthesis and rheological behavior of a novel <i>N</i> â€sulfonate ampholyte chitosan. Journal of Applied Polymer Science, 2009, 113, 3382-3387.	1.3	11