Michael C Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7837428/publications.pdf Version: 2024-02-01

		25034	20961
120	15,633	57	115
papers	citations	h-index	g-index
121	121	121	6030
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Star Formation in AEGIS Field Galaxies since z  = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies. Astrophysical Journal, 2007, 660, L43-L46.	4.5	1,552
2	Galaxy Luminosity Functions to <i>z</i> â^¼1 from DEEP2 and COMBOâ€17: Implications for Red Galaxy Formation. Astrophysical Journal, 2007, 665, 265-294.	4.5	890
3	High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature, 2010, 463, 781-784.	27.8	807
4	A study of the gas-star formation relation over cosmic timeâ Monthly Notices of the Royal Astronomical Society, 0, 407, 2091-2108.	4.4	776
5	PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN <i>z</i> â^1/4 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 768, 74.	4.5	752
6	THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS. Astrophysical Journal, Supplement Series, 2013, 208, 5.	7.7	544
7	The Mass Assembly History of Field Galaxies: Detection of an Evolving Mass Limit for Starâ€Forming Galaxies. Astrophysical Journal, 2006, 651, 120-141.	4.5	524
8	UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES AT <i>z</i> = 1.4. Astrophysical Journal, 2009, 692, 187-211.	4.5	495
9	COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS. Astrophysical Journal, 2015, 800, 20.	4.5	482
10	PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions*. Astrophysical Journal, 2018, 853, 179.	4.5	467
11	The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets. Astrophysical Journal, 2007, 660, L1-L6.	4.5	465
12	Science Objectives and Early Results of the DEEP2 Redshift Survey. , 2003, , .		420
13	The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function toz â^¼â€‰1. Astrophysical Journal, 2006, 647, 853-873.	4.5	327
14	The Team Keck Treasury Redshift Survey of the GOODS-North Field. Astronomical Journal, 2004, 127, 3121-3136.	4.7	255
15	CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD. Astrophysical Journal, Supplement Series, 2013, 206, 10.	7.7	252
16	THE METALLICITY DEPENDENCE OF THE CO → H ₂ CONVERSION FACTOR IN <i>z</i> ⩾ 1 STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 746, 69.	4.5	232
17	The DEEP2 Galaxy Redshift Survey: the role of galaxy environment in the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 0, 383, 1058-1078.	4.4	223
18	The Assembly History of Field Spheroidals: Evolution of Massâ€ŧo‣ight Ratios and Signatures of Recent Star Formation. Astrophysical Journal, 2005, 633, 174-197.	4.5	222

#	Article	IF	CITATIONS
19	The DEEP2 Galaxy Redshift Survey: the relationship between galaxy properties and environment at z 1. Monthly Notices of the Royal Astronomical Society, 2006, 370, 198-212.	4.4	219
20	AEGIS: The Color-Magnitude Relation for X-Ray-selected Active Galactic Nuclei. Astrophysical Journal, 2007, 660, L11-L14.	4.5	203
21	The DEEP2 galaxy redshift survey: evolution of the colour–density relation at 0.4 < z < 1.35. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1445-1459.	4.4	176
22	Dependence of galaxy quenching on halo mass and distance from its centre. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3306-3326.	4.4	169
23	INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS. Astrophysical Journal, 2009, 698, 956-965.	4.5	163
24	The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshiftâ~â€. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3018-3027.	4.4	155
25	THE SPLASH SURVEY: SPECTROSCOPY OF 15 M31 DWARF SPHEROIDAL SATELLITE GALAXIES. Astrophysical Journal, 2012, 752, 45.	4.5	151
26	The DEEP2 Galaxy Redshift Survey: Clustering of Galaxies in Early Data. Astrophysical Journal, 2004, 609, 525-538.	4.5	148
27	THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES. Astrophysical Journal, Supplement Series, 2015, 217, 26.	7.7	145
28	MERGER-DRIVEN FUELING OF ACTIVE GALACTIC NUCLEI: SIX DUAL AND OF AGNs DISCOVERED WITH <i>CHANDRA</i> AND <i>HUBBLE SPACE TELESCOPE</i> OBSERVATIONS. Astrophysical Journal, 2015, 806, 219.	4.5	135
29	CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip. Astrophysical Journal, Supplement Series, 2017, 229, 32.	7.7	127
30	THE LICK AGN MONITORING PROJECT 2011: Fe II REVERBERATION FROM THE OUTER BROAD-LINE REGION. Astrophysical Journal, 2013, 769, 128.	4.5	122
31	Measuring Galaxy Environments with Deep Redshift Surveys. Astrophysical Journal, 2005, 634, 833-848.	4.5	120
32	The role of environment in the mass-metallicity relation. Monthly Notices of the Royal Astronomical Society, 2008, 390, 245-256.	4.4	107
33	1.75 <i>h</i> ^{–1} kpc SEPARATION DUAL ACTIVE GALACTIC NUCLEI AT <i>z</i> = 0.36 IN THE COSMOS FIELD. Astrophysical Journal, 2009, 702, L82-L86.	4.5	107
34	AEGIS: Enhancement of Dust-enshrouded Star Formation in Close Galaxy Pairs and Merging Galaxies up to z ~ 1. Astrophysical Journal, 2007, 660, L51-L54.	4.5	103
35	KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES. Astrophysical Journal, 2012, 753, 42.	4.5	103
36	Taking care of business in a flash : constraining the time-scale for low-mass satellite quenching with ELVIS. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2039-2049.	4.4	102

#	Article	IF	CITATIONS
37	The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Monthly Notices of the Royal Astronomical Society, 2019, 485, 382-395.	4.4	101
38	THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD. Astrophysical Journal, Supplement Series, 2011, 193, 14.	7.7	100
39	Host galaxy morphologies of X-ray selected AGN: assessing the significance of different black hole fuelling mechanisms to the accretion density of the Universe at <i>z</i> â^¼ 1 Monthly Notices of the Royal Astronomical Society, 2009, 397, 623-633.	4.4	99
40	The surprising inefficiency of dwarf satellite quenching. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1396-1404.	4.4	92
41	THE ORIGIN OF DOUBLE-PEAKED NARROW LINES IN ACTIVE GALACTIC NUCLEI. I. VERY LARGE ARRAY DETECTIONS OF DUAL AGNS AND AGN OUTFLOWS. Astrophysical Journal, 2015, 813, 103.	4.5	92
42	THE LICK AGN MONITORING PROJECT 2011: REVERBERATION MAPPING OF MARKARIAN 50. Astrophysical Journal Letters, 2011, 743, L4.	8.3	87
43	Under pressure: quenching star formation in low-mass satellite galaxies via stripping. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1916-1928.	4.4	87
44	Galaxy assembly bias on the red sequence. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1942-1958.	4.4	82
45	PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE <i>z</i> = 1.5 STAR-FORMING GALAXY EGS13011166. Astrophysical Journal, 2013, 773, 68.	4.5	78
46	PHIBSS2: survey design and <i>z</i> = 0.5 – 0.8 results. Astronomy and Astrophysics, 2019, 622, A105.	5.1	77
47	THE LICK AGN MONITORING PROJECT 2011: DYNAMICAL MODELING OF THE BROAD-LINE REGION IN Mrk 50. Astrophysical Journal, 2012, 754, 49.	4.5	76
48	Evidence for a correlation between the sizes of quiescent galaxies and local environment to zÂâ^1⁄4 2. Monthly Notices of the Royal Astronomical Society, 2013, 435, 207-221.	4.4	74
49	Absence of evidence is not evidence of absence: the colour-density relation at fixed stellar mass persists to zâ^¼ 1â~ Monthly Notices of the Royal Astronomical Society, 2010, 409, 337-345.	4.4	69
50	Stellar mass function of cluster galaxies at <i>z</i> ~ 1.5: evidence for reduced quenching efficiency at high redshift. Astronomy and Astrophysics, 2016, 592, A161.	5.1	68
51	The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad-line Region. Astrophysical Journal, 2018, 866, 75.	4.5	68
52	ALMA Observations of Gas-rich Galaxies in zÂâ^¼Â1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments. Astrophysical Journal Letters, 2017, 842, L21.	8.3	67
53	An Extremely Massive Quiescent Galaxy at zÂ=Â3.493: Evidence of Insufficiently Rapid Quenching Mechanisms in Theoretical Models*. Astrophysical Journal Letters, 2020, 890, L1.	8.3	66
54	The DEEP2 Galaxy Redshift Survey: AEGIS Observations of a Dual AGN at z = 0.7. Astrophysical Journal, 2007, 660, L23-L26.	4.5	65

#	Article	IF	CITATIONS
55	The DEEP2 Galaxy Redshift Survey: environments of post-starburst galaxies at <i>z</i> â^¼ 0.1 and â^¼0.8. Monthly Notices of the Royal Astronomical Society, 2009, 398, 735-753.	4.4	65
56	Local Group Dwarf Elliptical Galaxies. I. Mapping the Dynamics of NGC 205 Beyond the Tidal Radius. Astronomical Journal, 2006, 131, 332-342.	4.7	63
57	Evidence for strong evolution in galaxy environmental quenching efficiency between z = 1.6 and z = 0.9. Monthly Notices of the Royal Astronomical Society: Letters, 0, , .	3.3	63
58	The Massive Ancient Galaxies at zÂ>Â3 NEar-infrared (MAGAZ3NE) Survey: Confirmation of Extremely Rapid Star Formation and Quenching Timescales for Massive Galaxies in the Early Universe*. Astrophysical Journal, 2020, 903, 47.	4.5	60
59	THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT <i>z</i>	4.5	59
60	CANDELS OBSERVATIONS OF THE ENVIRONMENTAL DEPENDENCE OF THE COLOR-MASS-MORPHOLOGY RELATION $AT < i>z < /i> = 1.6$. Astrophysical Journal, 2013, 770, 58.	4.5	59
61	TEMPERATURE-BASED METALLICITY MEASUREMENTS AT <i>z</i> = 0.8: DIRECT CALIBRATION OF STRONG-LINE DIAGNOSTICS AT INTERMEDIATE REDSHIFT. Astrophysical Journal, 2015, 813, 126.	4.5	59
62	THE DEEP2 GALAXY REDSHIFT SURVEY: CLUSTERING DEPENDENCE ON GALAXY STELLAR MASS AND STAR FORMATION RATE AT <i>z</i>	4.5	56
63	Non-linearity and environmental dependence of the star-forming galaxies main sequence. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2839-2851.	4.4	56
64	Molecular and Ionized Gas Phases of an AGN-driven Outflow in a Typical Massive Galaxy at zÂâ‰^Â2. Astrophysical Journal, 2019, 871, 37.	4.5	56
65	Towards a resolved Kennicutt-Schmidt law at high redshift. Astronomy and Astrophysics, 2013, 553, A130.	5.1	55
66	The Evolution of Environmental Quenching Timescales to zÂâ^¼Â1.6: Evidence for Dynamically Driven Quenching of the Cluster Galaxy Population. Astrophysical Journal, 2018, 866, 136.	4.5	54
67	The GOGREEN Survey: A deep stellar mass function of cluster galaxies at 1.0Â<Â <i>z</i> Â<Â1.4 and the complex nature of satellite quenching. Astronomy and Astrophysics, 2020, 638, A112.	5.1	53
68	The suppression of star formation on the smallest scales: what role does environment play?. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4031-4039.	4.4	50
69	SPECTROSCOPIC CONFIRMATION OF A PROTOCLUSTER AT z â‰^ 3.786. Astrophysical Journal, 2016, 823, 11.	4.5	44
70	The GOGREEN survey: the environmental dependence of the star-forming galaxy main sequence at 1.0 < <i>z</i> < 1.5. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5987-6000.	4.4	43
71	HIGH-RESOLUTION IMAGING OF PHIBSS <i>z</i> â ¹ /4 2 MAIN-SEQUENCE GALAXIES IN CO <i>J</i> = 1 â†' 0. Astrophysical Journal, 2015, 809, 175.	4.5	42
72	Environmental quenching of low-mass field galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4491-4498.	4.4	42

#	Article	IF	CITATIONS
73	Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4168-4185.	4.4	38
74	THE ORIGIN OF DOUBLE-PEAKED NARROW LINES IN ACTIVE GALACTIC NUCLEI. II. KINEMATIC CLASSIFICATIONS FOR THE POPULATION AT zÂ<Â0.1. Astrophysical Journal, 2016, 832, 67.	4.5	37
75	The GOGREEN survey: post-infall environmental quenching fails to predict the observed age difference between quiescent field and cluster galaxies at <i>z</i> Â>Â1. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5317-5342.	4.4	37
76	Resolving CO (2â^'1) in zÂâ^1⁄4Â1.6 Gas-rich Cluster Galaxies with ALMA: Rotating Molecular Gas Disks with Possible Signatures of Gas Stripping. Astrophysical Journal, 2019, 870, 56.	4.5	36
77	Plateau de Bure High-z Blue Sequence Survey 2 (PHIBSS2): Search for Secondary Sources, CO Luminosity Functions in the Field, and the Evolution of Molecular Gas Density through Cosmic Time*. Astronomical Journal, 2020, 159, 190.	4.7	36
78	Spectroscopic Confirmation of a Protocluster at z = 3.37 with a High Fraction of Quiescent Galaxies. Astrophysical Journal, 2022, 926, 37.	4.5	36
79	Measuring the dark matter halo mass of X-ray AGN at zÂâ^¼ 1 using photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2013, 430, 661-675.	4.4	35
80	Stellar halos in Illustris: probing the histories of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4004-4016.	4.4	35
81	METAL-POOR, STRONGLY STAR-FORMING GALAXIES IN THE DEEP2 SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS, TEMPERATURE-BASED METALLICITY, AND STAR FORMATION RATE. Astrophysical Journal, 2015, 805, 45.	4.5	34
82	Quiescent ultra-diffuse galaxies in the field originating from backsplash orbits. Nature Astronomy, 2021, 5, 1255-1260.	10.1	32
83	Investigating evidence for different black hole accretion modes since redshift zÂâ^1⁄4Â1. Monthly Notices of the Royal Astronomical Society, 2014, 440, 339-352.	4.4	31
84	THE SCATTER IN THE HOT GAS CONTENT OF EARLY-TYPE GALAXIES. Astrophysical Journal, 2015, 806, 156.	4.5	30
85	STELLAR MASS–GAS-PHASE METALLICITY RELATION AT 0.5 â‰ÂzÂâ‰�0.7: A POWER LAW WITH INCREASING TOWARD THE LOW-MASS REGIME. Astrophysical Journal, 2016, 822, 103.	SCATTER	29
86	The haloes and environments of nearby galaxies (HERON) $\hat{a} \in$ "I. Imaging, sample characteristics, and envelope diameters. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1539-1569.	4.4	28
87	Stability of the Broad-line Region Geometry and Dynamics in Arp 151 Over Seven Years. Astrophysical Journal, 2018, 856, 108.	4.5	26
88	The Origin of Double-peaked Narrow Lines in Active Galactic Nuclei. IV. Association with Galaxy Mergers. Astrophysical Journal, 2018, 867, 66.	4.5	26
89	The mass dependence of satellite quenching in Milky Way-like haloes. Monthly Notices of the Royal Astronomical Society, 2015, 447, 698-710.	4.4	25
90	The Lick AGN Monitoring Project 2016: Velocity-resolved Hβ Lags in Luminous Seyfert Galaxies. Astrophysical Journal, 2022, 925, 52.	4.5	25

#	Article	IF	CITATIONS
91	EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS. Astrophysical Journal, Supplement Series, 2013, 204, 21.	7.7	23
92	The GOGREEN and GCLASS surveys: first data release. Monthly Notices of the Royal Astronomical Society, 2020, 500, 358-387.	4.4	23
93	Galaxy Merger Candidates in High-redshift Cluster Environments. Astrophysical Journal, 2017, 843, 126.	4.5	22
94	The Local Group: the ultimate deep field. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462, L51-L55.	3.3	21
95	PHIBSS: exploring the dependence of the CO–H2 conversion factor on total mass surface density at z<1.5. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4886-4901.	4.4	20
96	A predicted correlation between age gradient and star formation history in FIRE dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1186-1201.	4.4	20
97	PROBING HIGH-REDSHIFT GALAXY FORMATION AT THE HIGHEST LUMINOSITIES: NEW INSIGHTS FROM DEIMOS SPECTROSCOPY. Astrophysical Journal, 2013, 771, 25.	4.5	19
98	A Census of Galaxy Constituents in a Coma Progenitor Observed at zÂ>Â3. Astrophysical Journal, 2019, 871, 83.	4.5	19
99	A <i>Spitzer</i> survey of Deep Drilling Fields to be targeted by the Vera C. Rubin Observatory Legacy Survey of Space and Time. Monthly Notices of the Royal Astronomical Society, 2020, 501, 892-910.	4.4	19
100	Observational Constraints on Correlated Star Formation and Active Galactic Nuclei in Late-stage Galaxy Mergers. Astrophysical Journal, 2017, 850, 27.	4.5	18
101	The origin of double-peaked narrow lines in active galactic nuclei – III. Feedback from biconical AGN outflows. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2160-2187.	4.4	17
102	The Lick AGN Monitoring Project 2016: Dynamical Modeling of Velocity-resolved Hβ Lags in Luminous Seyfert Galaxies. Astrophysical Journal, 2022, 930, 52.	4.5	17
103	Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj. Astrophysical Journal, 2017, 841, 64.	4.5	16
104	The GOGREEN survey: dependence of galaxy properties on halo mass at <i>z</i> > 1 and implications for environmental quenching. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3364-3384.	4.4	16
105	The evolution of star formation activity in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2725-2745.	4.4	15
106	The GOGREEN survey: transition galaxies and the evolution of environmental quenching. Monthly Notices of the Royal Astronomical Society, 2021, 508, 157-174.	4.4	15
107	Evidence of Runaway Gas Cooling in the Absence of Supermassive Black Hole Feedback at the Epoch of Cluster Formation. Astrophysical Journal Letters, 2020, 898, L50.	8.3	15
108	Deep ugrizY imaging and DEEP2/3 spectroscopy: a photometric redshift testbed for LSST and public release of data from the DEEP3 Galaxy Redshift Survey. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4565-4584.	4.4	12

#	Article	IF	CITATIONS
109	The Rest-frame <i>H</i> -band Luminosity Function of Red-sequence Galaxies in Clusters at 1.0 < <i>z</i> > < 1.3. Astrophysical Journal, 2019, 880, 119.	4.5	10
110	A FULLY IDENTIFIED SAMPLE OF AEGIS20 MICROJANSKY RADIO SOURCES. Astrophysical Journal, 2012, 756, 72.	4.5	9
111	The H α star formation main sequence in cluster and field galaxies at <i>z</i> â^¼ 1.6. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3061-3070.	4.4	9
112	A machine learning approach to measuring the quenched fraction of low-mass satellites beyond the Local Group. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1636-1645.	4.4	7
113	Sizing from the smallest scales: the mass of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4968-4982.	4.4	6
114	Evidence for Non-smooth Quenching in Massive Galaxies at z â^1⁄4 1. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	5
115	The GOGREEN Survey: Evidence of an Excess of Quiescent Disks in Clusters at 1.0 < z < 1.4. Astrophysical Journal, 2021, 920, 32.	4.5	5
116	The stellar population of metal-poor galaxies at zÂâ‰^Â0.8 and the evolution of the mass–metallicity relation. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2254-2267.	4.4	3
117	Disentangling the Physical Origin of Emission Line Ratio Offsets at High Redshift with Spatially Resolved Spectroscopy. Astrophysical Journal, 2021, 922, 12.	4.5	3
118	LoVoCCS. I. Survey Introduction, Data Processing Pipeline, and Early Science Results. Astrophysical Journal, 2022, 933, 84.	4.5	2
119	X-RAY EMISSION IN NON-AGN GALAXIES AT <i>z</i> \hat{a} % f 1. Astrophysical Journal, 2015, 806, 136.	4.5	1
120	Resolved star formation relations at high redshift from the IRAM PHIBSS program. Proceedings of the International Astronomical Union, 2015, 11, .	0.0	0