Hongliang Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/783732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials. Journal of Materials Chemistry A, 2017, 5, 554-563.	10.3	472
2	Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 2019, 58, 768-777.	16.0	457
3	Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics. Journal of Materials Chemistry A, 2016, 4, 13778-13785.	10.3	409
4	Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy, 2020, 67, 104264.	16.0	320
5	Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. Journal of Materials Chemistry C, 2016, 4, 1795-1803.	5.5	279
6	High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. Journal of Materials Chemistry A, 2021, 9, 18026-18085.	10.3	277
7	Realizing high comprehensive energy storage performance in lead-free bulk ceramics <i>via</i> designing an unmatched temperature range. Journal of Materials Chemistry A, 2019, 7, 27256-27266.	10.3	223
8	A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. Journal of Materials Chemistry C, 2019, 7, 7993-8002.	5.5	181
9	Bi _{0.5} Na _{0.5} TiO ₃ -based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field. Journal of Materials Chemistry C, 2019, 7, 10514-10520.	5.5	155
10	Significant increase in comprehensive energy storage performance of potassium sodium niobate-based ceramics via synergistic optimization strategy. Energy Storage Materials, 2022, 45, 861-868.	18.0	145
11	A new family of sodium niobate-based dielectrics for electrical energy storage applications. Journal of the European Ceramic Society, 2019, 39, 2899-2907.	5.7	144
12	Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chemical Engineering Journal, 2020, 390, 124566.	12.7	140
13	Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering. RSC Advances, 2016, 6, 34381-34389.	3.6	136
14	Large recoverable energy storage density and low sintering temperature in potassiumâ€sodium niobateâ€based ceramics for multilayer pulsed power capacitors. Journal of the American Ceramic Society, 2017, 100, 1517-1526.	3.8	133
15	High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics. Journal of the European Ceramic Society, 2019, 39, 295-304.	5.7	80
16	Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nature Communications, 2021, 12, 1414.	12.8	71
17	Ultrahigh storage density achieved with (1-x)KNN-xBZN ceramics. Journal of the European Ceramic Society, 2020, 40, 2936-2944.	5.7	57
18	High thermal stability of electric field-induced strain in (1â^'x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics. Journal of the European Ceramic Society, 2019, 39, 277-286.	5.7	56

HONGLIANG DU

#	Article	IF	CITATIONS
19	Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics. Journal of Materials Chemistry A, 2019, 7, 11665-11672.	10.3	50
20	A strategy for obtaining high electrostrictive properties and its application in barium stannate titanate lead-free ferroelectrics. Ceramics International, 2018, 44, 21816-21824.	4.8	45
21	Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chemical Engineering Journal, 2022, 446, 137389.	12.7	40
22	Ultra-slim pinched polarization-electric field hysteresis loops and thermally stable electrostrains in lead-free sodium bismuth titanate-based solid solutions. Journal of Alloys and Compounds, 2019, 788, 1182-1192.	5.5	37
23	High electrostrictive effect in La3+-doped Ba(Zr0.2Ti0.8)O3 lead-free ferroelectrics. Journal of Alloys and Compounds, 2019, 776, 599-605.	5.5	35
24	Thermal stability of dielectric and energy storage performances of Ca-substituted BNTZ ferroelectric ceramics. Ceramics International, 2021, 47, 6298-6309.	4.8	33
25	Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes. Journal of Alloys and Compounds, 2022, 896, 163139.	5.5	33
26	Thermally stable electrostrains and composition-dependent electrostrictive coefficient Q33 in lead-free ferroelectric ceramics. Ceramics International, 2019, 45, 22854-22861.	4.8	29
27	A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Advances, 2015, 5, .	1.3	27
28	High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 solid solutions. Ceramics International, 2019, 45, 5518-5524.	4.8	24
29	Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics. Scientific Reports, 2016, 6, 24178.	3.3	23
30	Extremely High Piezoelectric Properties in Pb-Based Ceramics through Integrating Phase Boundary and Defect Engineering. ACS Applied Materials & Interfaces, 2021, 13, 38517-38525.	8.0	23
31	Ultrahigh room temperature electrocaloric response in lead-free bulk ceramics <i>via</i> tape casting. Journal of Materials Chemistry C, 2019, 7, 6860-6866.	5.5	22
32	High thermally stable dielectric permittivity, polarization enhancement and electrostrictive properties in Zr-substituted bismuth sodium titanate lead-free ferroelectric ceramics. Ceramics International, 2020, 46, 22889-22899.	4.8	16
33	Phase transition behavior and high electrostrictive strains in Bi(Li0.5Nb0.5)O3-doped lead magnesium niobate-based solid solutions. Journal of Alloys and Compounds, 2019, 806, 206-214.	5.5	14
34	Bi(Mg0.5Ti0.5)O3-doped NaNbO3 ferroelectric ceramics: Linear regulation of Curie temperature and ultra-high thermally stable dielectric response. Ceramics International, 2019, 45, 21175-21182.	4.8	14
35	Structure, dielectric, electrostrictive and electrocaloric properties of environmentally friendly Bi-substituted BCZT ferroelectric ceramics. Ceramics International, 2021, 47, 34676-34686.	4.8	13
36	Large electrostrain and high energy-storage properties of (Sr1/3Nb2/3)4+-substituted (Bi0.51Na0.5)TiO3-0.07BaTiO3 lead-free ceramics. Ceramics International, 2022, 48, 23975-23982.	4.8	13

HONGLIANG DU

#	Article	IF	CITATIONS
37	Nonstoichiometric effect of A-site complex ions on structural, dielectric, ferroelectric, and electrostrain properties of bismuth sodium titanateÂceramics. Ceramics International, 2021, 47, 32747-32755.	4.8	12
38	Large-Area Piezoelectric Single Crystal Composites via 3-D-Printing-Assisted Dice-and-Insert Technology for Hydrophone Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3241-3248.	3.0	12
39	High-Performance Curved Piezoelectric Single-Crystal Composites via 3D-Printing-Assisted Dice and Insert Technology for Underwater Acoustic Transducer Applications. ACS Applied Materials & Interfaces, 2022, 14, 8137-8145.	8.0	12
40	All-dielectric metamaterial frequency selective surface. Journal of Advanced Dielectrics, 2017, 07, 1730002.	2.4	11
41	Intergrowth Bismuth Layer-Structured Na0.5Bi2.5Nb2O9–Bi4Ti3O12 High Temperature Ferroelectrics Ceramics. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 355-359.	3.7	8
42	Ultra-slim electrostrains with superior temperature-stability in lead-free sodium niobate-based ferroelectric perovskite. Journal of Materiomics, 2022, 8, 1230-1238.	5.7	6
43	All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators. Journal of Advanced Dielectrics, 2017, 07, 1750009.	2.4	4
44	High comprehensive electrocaloric performance in barium titanate-based ceramics via integrating diffuse phase transition near room temperature and a high applied electric field. Ceramics International, 2022, 48, 6842-6849.	4.8	4
45	Na/K RATIOS DEPENDENCE OF PIEZOELECTRIC AND FERROELECTRIC PROPERTIES IN (K1-xNax)NbO3 LEAD-FREE CERAMICS. Journal of Advanced Dielectrics, 2011, 01, 471-478.	2.4	3
46	Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure. Journal of Advanced Dielectrics, 2015, 05, 1550009.	2.4	2
47	Methods for designing allâ€dielectric frequency selective surface via dielectric materials. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700168.	1.8	2
48	Formation mechanism of barium titanate single crystalline microplates based on topochemical transformation using bismuth-based precursors. Ceramics International, 2021, 47, 4543-4550.	4.8	2
49	A transmit/reflect switchable frequency selective surface based on all dielectric metamaterials. Journal of Advanced Dielectrics, 2015, 05, 1550035.	2.4	1
50	Allâ€Đielectric Frequency Selective Surface Based on 3D Printing Materials. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700840.	1.8	1
51	Tunable planar left-handed metamaterials based on split-ring resonator pairs. , 2015, , .		0
52	The thickness resonance of the bandpass frequency selective surface using high-permittivity dielectric materials. , 2016, , .		0
53	Toward Abnormal Reflection by Ceramic Based All-Radient Gradient Metasurface. , 2018, , .		0
54	All-Dielectric Frequency Selective Surface Based on 3D Printing Materials (Phys. Status Solidi A) Tj ETQq0 0 0 rgB	T /Oyerloc	:k 10 Tf 50 62

4

#	Article	IF	CITATIONS
55	Frequency selective polarization conversion metasurface using E-shaped high permittivity ceramics. , 2018, , .		0