
Chris McIntosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7837198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pilot study of machine-learning based automated planning for primary brain tumours. Radiation Oncology, 2022, 17, 3.	1.2	3
2	SuPART: supervised projective adapted resonance theory for automatic quality assurance approval of radiotherapy treatment plans. Physics in Medicine and Biology, 2022, 67, 065004.	1.6	0
3	Cardiovascular signatures of COVID-19 predict mortality and identify barrier stabilizing therapies. EBioMedicine, 2022, 78, 103982.	2.7	17
4	Mass Spectrometry Imaging Reveals a Gradient of Cancer-like Metabolic States in the Vicinity of Cancer Not Seen in Morphometric Margins from Microscopy. Analytical Chemistry, 2021, 93, 4408-4416.	3.2	15
5	Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer. Nature Medicine, 2021, 27, 999-1005.	15.2	78
6	Performance stability evaluation of atlas-based machine learning radiation therapy treatment planning in prostate cancer. Physics in Medicine and Biology, 2021, 66, 134001.	1.6	1
7	Automated Machine-Learning Radiotherapy Planning for Pediatric and Adult Brain Tumours. Journal of Medical Imaging and Radiation Sciences, 2021, 52, S3.	0.2	0
8	Analytics methods and tools for integration of biomedical data in medicine. , 2021, , 113-129.		0
9	Remote Mobile Outpatient Monitoring in Transplant (Reboot) 2.0: Protocol for a Randomized Controlled Trial. JMIR Research Protocols, 2021, 10, e26816.	0.5	2
10	Understanding machine learning classifier decisions in automated radiotherapy quality assurance. Physics in Medicine and Biology, 2021, , .	1.6	2
11	Letter by Wang et al Regarding Article, "Association Between Coffee Intake and Incident Heart Failure Risk: A Machine Learning Analysis of the FHS, the ARIC Study, and the CHS― Circulation: Heart Failure, 2021, 14, e008611.	1.6	0
12	Automatic classification of dental artifact status for efficient image veracity checks: effects of image resolution and convolutional neural network depth. Physics in Medicine and Biology, 2020, 65, 015005.	1.6	9
13	External validation and transfer learning of convolutional neural networks for computed tomography dental artifact classification. Physics in Medicine and Biology, 2020, 65, 035017.	1.6	11
14	Transparency and reproducibility in artificial intelligence. Nature, 2020, 586, E14-E16.	13.7	233
15	Automated Machine-Learning Radiation Therapy Treatment Planning for Pediatric and Adult Brain Tumors. International Journal of Radiation Oncology Biology Physics, 2020, 108, e777.	0.4	2
16	26: Automated Machine-Learning Radiotherapy Planning for Pediatric and Adult Brain Tumours. Radiotherapy and Oncology, 2020, 150, S15.	0.3	0
17	User-controlled pipelines for feature integration and head and neck radiation therapy outcome predictions. Physica Medica, 2020, 70, 145-152.	0.4	14
18	CDF-Net: Cross-Domain Fusion Network for Accelerated MRI Reconstruction. Lecture Notes in Computer Science, 2020, , 421-430.	1.0	4

CHRIS MCINTOSH

#	Article	IF	CITATIONS
19	Abstract P4-12-24: Evaluation of partial breast irradiation suitability in early stage breast cancer patients. , 2020, , .		0
20	163 Application of Novel Radiotherapy and Imaging Features for Head and Neck Patient Locoregional Failure Predictions. Radiotherapy and Oncology, 2019, 139, S70.	0.3	0
21	Vulnerabilities of radiomic signature development: The need for safeguards. Radiotherapy and Oncology, 2019, 130, 2-9.	0.3	233
22	Guided undersampling classification for automated radiation therapy quality assurance of prostate cancer treatment. Medical Physics, 2018, 45, 1306-1316.	1.6	10
23	Clinical Application of a Novel Voxel- and Machine Learning-Based Automated Planning Method for Prostate Volumetric Arc Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 102, e533.	0.4	3
24	Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning. Physics in Medicine and Biology, 2017, 62, 415-431.	1.6	61
25	Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method. Physics in Medicine and Biology, 2017, 62, 5926-5944.	1.6	127
26	Contextual Atlas Regression Forests: Multiple-Atlas-Based Automated Dose Prediction in Radiation Therapy. IEEE Transactions on Medical Imaging, 2016, 35, 1000-1012.	5.4	58
27	Applying a Real Time Pretreatment Review of Radiation Oncology Breast Cancer Rounds: Automated Quality Assurance Results. International Journal of Radiation Oncology Biology Physics, 2015, 93, E586.	0.4	0
28	Novel Morphological and Appearance Features for Predicting Physical Disability from MR Images in Multiple Sclerosis Patients. Lecture Notes in Computational Vision and Biomechanics, 2014, , 61-73.	0.5	2
29	Groupwise Conditional Random Forests for Automatic Shape Classification and Contour Quality Assessment in Radiotherapy Planning. IEEE Transactions on Medical Imaging, 2013, 32, 1043-1057.	5.4	55
30	Globally optimal spinal cord segmentation using a minimal path in high dimensions. , 2013, , .		12
31	Augmenting Auto-context with Global Geometric Features for Spinal Cord Segmentation. Lecture Notes in Computer Science, 2013, , 211-218.	1.0	5
32	Medial-Based Deformable Models in Nonconvex Shape-Spaces for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2012, 31, 33-50.	5.4	24
33	Spinal Cord Segmentation for Volume Estimation in Healthy and Multiple Sclerosis Subjects Using Crawlers and Minimal Paths. , 2011, , .		16
34	Convex multi-region probabilistic segmentation with shape prior in the isometric log-ratio transformation space. , 2011, , .		18
35	Perception-Based Visualization of Manifold-Valued Medical Images Using Distance-Preserving Dimensionality Reduction. IEEE Transactions on Medical Imaging, 2011, 30, 1314-1327.	5.4	15
36	Optimal Weights for Convex Functionals in Medical Image Segmentation. Lecture Notes in Computer Science, 2009, , 1079-1088.	1.0	6

CHRIS MCINTOSH

#	Article	IF	CITATIONS
37	Human Limb Delineation and Joint Position Recovery Using Localized Boundary Models. , 2007, , .		7
38	ls a Single Energy Functional Sufficient? Adaptive Energy Functionals and Automatic Initialization. , 2007, 10, 503-510.		19
39	Spinal Crawlers: Deformable Organisms for Spinal Cord Segmentation and Analysis. Lecture Notes in Computer Science, 2006, 9, 808-815.	1.0	29
40	I-DO: A Deformable Organisms framework for ITK. The Insight Journal, 2006, , .	0.2	0
41	3D live-wire-based semi-automatic segmentation of medical images. , 2005, 5747, 1597.		24
42	Physics-based deformable organisms for medical image analysis. , 2005, , .		8
43	Vessel Crawlers: 3D Physically-based Deformable Organisms for Vasculature Segmentation and Analysis. , 0, , .		22
44	Domain adaptation of automated treatment planning from computed tomography to magnetic resonance. Physics in Medicine and Biology, 0, , .	1.6	0