
## Pamela A Hoodless

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7837170/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | De novo assembly and analysis of RNA-seq data. Nature Methods, 2010, 7, 909-912.                                                                                                                                                                                                                                        | 9.0  | 886       |
| 2  | MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated<br>in Colorectal Carcinoma. Cell, 1996, 86, 543-552.                                                                                                                                                                  | 13.5 | 833       |
| 3  | The winged-helix transcription factor HNF-3β is required for notochord development in the mouse embryo. Cell, 1994, 78, 575-588.                                                                                                                                                                                        | 13.5 | 746       |
| 4  | MADR2 Is a Substrate of the TGFÎ <sup>2</sup> Receptor and Its Phosphorylation Is Required for Nuclear Accumulation and Signaling. Cell, 1996, 87, 1215-1224.                                                                                                                                                           | 13.5 | 695       |
| 5  | MADR1, a MAD-Related Protein That Functions in BMP2 Signaling Pathways. Cell, 1996, 85, 489-500.                                                                                                                                                                                                                        | 13.5 | 692       |
| 6  | Smad2 Signaling in Extraembryonic Tissues Determines Anterior-Posterior Polarity of the Early Mouse<br>Embryo. Cell, 1998, 92, 797-808.                                                                                                                                                                                 | 13.5 | 439       |
| 7  | Specific Activation of Smad1 Signaling Pathways by the BMP7 Type I Receptor, ALK2. Journal of Biological Chemistry, 1998, 273, 25628-25636.                                                                                                                                                                             | 1.6  | 414       |
| 8  | Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic<br>tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting<br>blastocyst Proceedings of the National Academy of Sciences of the United States of America, 1994, 91,<br>7598-7602. | 3.3  | 333       |
| 9  | Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. Journal of Clinical Investigation, 2006, 116, 2808-2816.                                                                                                                                                | 3.9  | 315       |
| 10 | Slug is a direct Notch target required for initiation of cardiac cushion cellularization. Journal of Cell Biology, 2008, 182, 315-325.                                                                                                                                                                                  | 2.3  | 304       |
| 11 | The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature, 2019, 569, 361-367.                                                                                                                                                                                                                 | 13.7 | 285       |
| 12 | Notch Activation Results in Phenotypic and Functional Changes Consistent With<br>Endothelial-to-Mesenchymal Transformation. Circulation Research, 2004, 94, 910-917.                                                                                                                                                    | 2.0  | 250       |
| 13 | Identification of a new intrinsically timed developmental checkpoint that reprograms key<br>hematopoietic stem cell properties. Proceedings of the National Academy of Sciences of the United<br>States of America, 2007, 104, 5878-5882.                                                                               | 3.3  | 209       |
| 14 | FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes and Development, 2001, 15, 1257-1271.                                                                                                                                                                                               | 2.7  | 191       |
| 15 | Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Research, 2008, 18, 1906-1917.                                                                                                                                                                  | 2.4  | 163       |
| 16 | Targeted Disruption in Murine Cells Reveals Variable Requirement for Smad4 in Transforming Growth<br>Factor β-related Signaling. Journal of Biological Chemistry, 2000, 275, 2063-2070.                                                                                                                                 | 1.6  | 149       |
| 17 | Notch Initiates the Endothelial-to-Mesenchymal Transition in the Atrioventricular Canal through Autocrine Activation of Soluble Guanylyl Cyclase. Developmental Cell, 2011, 21, 288-300.                                                                                                                                | 3.1  | 144       |
| 18 | Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing.<br>Nucleic Acids Research, 2008, 36, 4549-4564.                                                                                                                                                                | 6.5  | 137       |

Pamela A Hoodless

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Co-ordinating Notch, BMP, and TCF-β signaling during heart valve development. Cellular and Molecular<br>Life Sciences, 2013, 70, 2899-2917.                                                                                                                 | 2.4  | 120       |
| 20 | A mouse atlas of gene expression: Large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18485-18490. | 3.3  | 112       |
| 21 | Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. Genome Research, 2010, 20, 1037-1051.                                                                        | 2.4  | 109       |
| 22 | Hippo Signaling Influences HNF4A and FOXA2 Enhancer Switching during Hepatocyte Differentiation.<br>Cell Reports, 2014, 9, 261-271.                                                                                                                         | 2.9  | 89        |
| 23 | Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Developmental Biology, 2006,<br>300, 523-533.                                                                                                                                      | 0.9  | 86        |
| 24 | Dominant-Negative Smad2 Mutants Inhibit Activin/Vg1 Signaling and Disrupt Axis Formation in Xenopus.<br>Developmental Biology, 1999, 207, 364-379.                                                                                                          | 0.9  | 72        |
| 25 | S1P Stimulates Proliferation by Upregulating CTGF Expression through S1PR2-Mediated YAP Activation.<br>Molecular Cancer Research, 2018, 16, 1543-1555.                                                                                                      | 1.5  | 58        |
| 26 | Identification and analysis of murine pancreatic islet enhancers. Diabetologia, 2013, 56, 542-552.                                                                                                                                                          | 2.9  | 55        |
| 27 | Hepatocyte Nuclear Factor 4â€Alpha Is Essential for the Active Epigenetic State at Enhancers in Mouse<br>Liver. Hepatology, 2019, 70, 1360-1376.                                                                                                            | 3.6  | 52        |
| 28 | Single-Cell Transcriptomics Reveals Early Emergence of Liver Parenchymal and Non-parenchymal Cell<br>Lineages. Cell, 2020, 183, 702-716.e14.                                                                                                                | 13.5 | 52        |
| 29 | SOX9 modulates the expression of key transcription factors required for heart valve development.<br>Development (Cambridge), 2015, 142, 4340-50.                                                                                                            | 1.2  | 49        |
| 30 | The next generation: Using new sequencing technologies to analyse gene regulation. Respirology, 2011, 16, 210-222.                                                                                                                                          | 1.3  | 46        |
| 31 | Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components. PLoS Pathogens, 2014, 10, e1004070.                                                                                               | 2.1  | 46        |
| 32 | Embryonic Fibroblasts from Mice Lacking Tgif Were Defective in Cell Cycling. Molecular and Cellular<br>Biology, 2006, 26, 4302-4310.                                                                                                                        | 1.1  | 36        |
| 33 | Large-scale production of SACE libraries from microdissected tissues, flow-sorted cells, and cell<br>lines. Genome Research, 2006, 17, 108-116.                                                                                                             | 2.4  | 34        |
| 34 | The role of the innate immune response regulatory gene ABCF1 in mammalian embryogenesis and development. PLoS ONE, 2017, 12, e0175918.                                                                                                                      | 1.1  | 30        |
| 35 | APELA promotes tumour growth and cell migration in ovarian cancer in a p53-dependent manner.<br>Gynecologic Oncology, 2017, 147, 663-671.                                                                                                                   | 0.6  | 29        |
| 36 | Dynamic expression of <i>Thyrotropinâ€releasing hormone</i> in the mouse definitive endoderm.<br>Developmental Dynamics, 2007, 236, 2909-2917.                                                                                                              | 0.8  | 21        |

Pamela A Hoodless

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Expression of two novel transcripts in the mouse definitive endoderm. Gene Expression Patterns, 2010, 10, 127-134.                                                                                      | 0.3 | 21        |
| 38 | A Notchâ€dependent transcriptional hierarchy promotes mesenchymal transdifferentiation in the cardiac cushion. Developmental Dynamics, 2014, 243, 894-905.                                              | 0.8 | 21        |
| 39 | The TGF-β/Smad Repressor TG-Interacting Factor 1 (TGIF1) Plays a Role in Radiation-Induced Intestinal<br>Injury Independently of a Smad Signaling Pathway. PLoS ONE, 2012, 7, e35672.                   | 1.1 | 20        |
| 40 | The TG-interacting Factor TGIF1 Regulates Stress-induced Proinflammatory Phenotype of Endothelial<br>Cells. Journal of Biological Chemistry, 2012, 287, 38913-38921.                                    | 1.6 | 19        |
| 41 | YAP transcriptionally regulates ErbB2 to promote liver cell proliferation. Biochimica Et Biophysica<br>Acta - Gene Regulatory Mechanisms, 2018, 1861, 854-863.                                          | 0.9 | 19        |
| 42 | G protein-coupled estrogen receptor stimulates human trophoblast cell invasion via YAP-mediated ANGPTL4 expression. Communications Biology, 2021, 4, 1285.                                              | 2.0 | 19        |
| 43 | Foxh1 and Foxa2 are not required for formation of the midgut and hindgut definitive endoderm.<br>Developmental Biology, 2010, 337, 471-481.                                                             | 0.9 | 17        |
| 44 | Genome-wide microRNA and messenger RNA profiling in rodent liver development implicates mir302b<br>and mir20a in repressing transforming growth factor-beta signaling. Hepatology, 2013, 57, 2491-2501. | 3.6 | 17        |
| 45 | Genomic analysis distinguishes phases of early development of the mouse atrio-ventricular canal.<br>Physiological Genomics, 2010, 40, 150-157.                                                          | 1.0 | 15        |
| 46 | Dynamics of expression of growth differentiation factor 15 in normal and PIN development in the mouse. Differentiation, 2007, 75, 325-336.                                                              | 1.0 | 12        |
| 47 | Inhibitory control of neural differentiation in mammalian cells. Development Genes and Evolution, 1997, 207, 19-28.                                                                                     | 0.4 | 11        |
| 48 | Twist1 Transcriptional Targets in the Developing Atrio-Ventricular Canal of the Mouse. PLoS ONE, 2012, 7, e40815.                                                                                       | 1.1 | 10        |
| 49 | Signalling pathways and transcriptional regulators orchestrating liver development and cancer.<br>Development (Cambridge), 2021, 148, .                                                                 | 1.2 | 9         |
| 50 | Huntingtin interacting proteins 14 and 14-like are required for chorioallantoic fusion during early placental development. Developmental Biology, 2015, 397, 257-266.                                   | 0.9 | 8         |
| 51 | A knock-in mouse strain facilitates dynamic tracking and enrichment of MEIS1. Blood Advances, 2017, 1, 2225-2235.                                                                                       | 2.5 | 8         |
| 52 | Delineating MEIS1 cis-regulatory elements active in hematopoietic cells. Leukemia, 2014, 28, 433-436.                                                                                                   | 3.3 | 6         |
| 53 | A regulatory network controls nephrocan expression and midgut patterning. Development (Cambridge), 2014, 141, 3772-3781.                                                                                | 1.2 | 6         |
| 54 | Elucidating the importance and regulation of key enhancers for human MEIS1 expression. Leukemia, 2022, 36, 1980-1989.                                                                                   | 3.3 | 6         |

| #  | Article                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Expression patterns of Yes-associated protein 1 in the developing mouse liver. Gene Expression Patterns, 2018, 29, 10-17. | 0.3 | 3         |
| 56 | Repressive Epigenetic Signatures Safeguard the Liver. Developmental Cell, 2019, 50, 3-4.                                  | 3.1 | 2         |