
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7837116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic Formaldehyde Oxidation over Plasmonic Au/TiO ₂ under Visible Light: Moisture Indispensability and Light Enhancement. ACS Catalysis, 2017, 7, 6514-6524.	11.2	121
2	High-Efficient Conversion of CO2 in AC-Pulsed Tornado Gliding Arc Plasma. Plasma Chemistry and Plasma Processing, 2016, 36, 437-449.	2.4	85
3	Visible-light photocatalytic oxidation of CO over plasmonic Au/TiO 2 : Unusual features of oxygen plasma activation. Applied Catalysis B: Environmental, 2016, 188, 48-55.	20.2	75
4	Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37, 4945-4954.	7.1	60
5	Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction. Chemical Engineering Journal, 2016, 288, 671-679.	12.7	57
6	Plasma chain catalytic reforming of methanol for on-board hydrogen production. Chemical Engineering Journal, 2019, 369, 245-252.	12.7	52
7	Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra. Journal Physics D: Applied Physics, 2013, 46, 345201.	2.8	49
8	Atmospheric-pressure O2 plasma treatment of Au/TiO2 catalysts for CO oxidation. Catalysis Today, 2015, 256, 142-147.	4.4	49
9	Kinetic study on visible-light photocatalytic removal of formaldehyde from air over plasmonic Au/TiO 2. Catalysis Today, 2017, 281, 630-635.	4.4	48
10	Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chemical Engineering Journal, 2015, 264, 445-452.	12.7	45
11	In-situ regeneration of Au nanocatalysts by atmospheric-pressure air plasma: Significant contribution of water vapor. Applied Catalysis B: Environmental, 2015, 179, 69-77.	20.2	44
12	In-situ plasma regeneration of deactivated Au/TiO2 nanocatalysts during CO oxidation and effect of N2 content. Applied Catalysis B: Environmental, 2012, 119-120, 49-55.	20.2	43
13	Plasma-promoted Au/TiO2 nanocatalysts for photocatalytic formaldehyde oxidation under visible-light irradiation. Catalysis Today, 2019, 337, 132-138.	4.4	39
14	A novel process of ozone catalytic oxidation for low concentration formaldehyde removal. Chinese Journal of Catalysis, 2017, 38, 1759-1769.	14.0	38
15	Methane Dry Reforming over Ni/Al2O3 Catalyst in Spark Plasma Reactor: Linking Computational Fluid Dynamics (CFD) with Reaction Kinetic Modelling. Catalysis Today, 2021, 362, 11-21.	4.4	38
16	Ozone catalytic oxidation of adsorbed benzene over AgMn/HZSM-5 catalysts at room temperature. Catalysis Science and Technology, 2014, 4, 2589-2598.	4.1	35
17	Ozone catalytic oxidation of benzene over AgMn/HZSM-5 catalysts at room temperature: Effects of Mn loading and water content. Chinese Journal of Catalysis, 2014, 35, 1465-1474.	14.0	34
18	Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge. Chemical Engineering Journal, 2016, 285, 243-251.	12.7	34

#	Article	IF	CITATIONS
19	Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis. Chemical Engineering Journal, 2018, 353, 297-304.	12.7	34
20	Enhanced effect of plasma on catalytic reduction of CO 2 to CO with hydrogen over Au/CeO 2 at low temperature. Journal of Energy Chemistry, 2017, 26, 488-493.	12.9	33
21	Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow. Physics of Plasmas, 2014, 21, 053507.	1.9	30
22	Oxidative pyrolysis reforming of methanol in warm plasma for an on-board hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 13617-13624.	7.1	30
23	Ozone Catalytic Oxidation of HCHO in Air over MnOx at Room Temperature. Chinese Journal of Catalysis, 2012, 33, 396-401.	14.0	29
24	Renewable and high-concentration syngas production from oxidative reforming of simulated biogas with low energy cost in a plasma shade. Chemical Engineering Journal, 2013, 234, 240-246.	12.7	29
25	CO ₂ conversion, utilisation and valorisation in gliding arc plasma reactors. Journal Physics D: Applied Physics, 2020, 53, 253001.	2.8	28
26	Plasma Catalytic Oxidation of Stored Benzene in a Cycled Storage-Discharge (CSD) Process: Catalysts, Reactors and Operation Conditions. Plasma Chemistry and Plasma Processing, 2011, 31, 799-810.	2.4	26
27	Microwave Plasma Jet in Water: Characterization and Feasibility to Wastewater Treatment. Plasma Chemistry and Plasma Processing, 2018, 38, 1003-1020.	2.4	25
28	A promising visible-light photocatalyst: H2 plasma-activated amorphous-TiO2-supported Au nanoparticles. Journal of Catalysis, 2019, 375, 380-388.	6.2	25
29	Optimized mixed reforming of biogas with O2 addition in spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37, 16916-16924.	7.1	24
30	Low temperature removal of toluene over Ag/CeO ₂ /Al ₂ O ₃ nanocatalyst in an atmospheric plasma catalytic system. Plasma Processes and Polymers, 2018, 15, 1700215.	3.0	23
31	Methanol steam reforming by heat-insulated warm plasma catalysis for efficient hydrogen production. Catalysis Today, 2019, 337, 76-82.	4.4	22
32	Cycled storage-discharge (CSD) plasma catalytic removal of benzene over AgMn/HZSM-5 using air as discharge gas. Catalysis Science and Technology, 2016, 6, 3788-3796.	4.1	21
33	Plasma catalytic steam methane reforming for distributed hydrogen production. Catalysis Today, 2019, 337, 69-75.	4.4	21
34	Effect of CO2/CH4 ratio on biogas reforming with added O2 through an unique spark-shade plasma. International Journal of Hydrogen Energy, 2014, 39, 13902-13908.	7.1	20
35	Post-plasma catalytic oxidative CO2 reforming of methane over Ni-based catalysts. Catalysis Today, 2015, 256, 96-101.	4.4	19
36	Warm-plasma catalytic reduction of CO2 with CH4. Catalysis Today, 2019, 330, 54-60.	4.4	19

#	Article	IF	CITATIONS
37	Exceptional activity for photocatalytic mineralization of formaldehyde over amorphous titania nanofilms. Chemical Engineering Journal, 2016, 306, 1001-1009.	12.7	18
38	In-liquid arc plasma jet and its application to phenol degradation. Journal Physics D: Applied Physics, 2018, 51, 114005.	2.8	18
39	Steam reforming of methane in a temperature-controlled dielectric barrier discharge reactor: the role of electron-induced chemistry versus thermochemistry. Journal Physics D: Applied Physics, 2018, 51, 385201.	2.8	18
40	In Situ Regeneration of Au Nanocatalysts by Atmospheric-Pressure Air Plasma: Regeneration Characteristics of Square-Wave Pulsed Plasma. Topics in Catalysis, 2017, 60, 914-924.	2.8	17
41	Gliding Arc Plasma Synthesis of Crystalline TiO2 Nanopowders with High Photocatalytic Activity. Plasma Chemistry and Plasma Processing, 2013, 33, 827-838.	2.4	16
42	Gliding Arc Plasma Synthesis of Visibleâ€Light Active Câ€Doped Titania Photocatalysts. Plasma Processes and Polymers, 2015, 12, 422-430.	3.0	16
43	TiO2-supported Au-Ag plasmonic nanocatalysts achieved by plasma restructuring and activation. Journal of Hazardous Materials, 2021, 402, 123508.	12.4	14
44	Uniformity, Structure, and Photocatalytic Activity of TiO ₂ Films Deposited by Atmosphericâ€Pressure Linear Cold Plasma. Chemical Vapor Deposition, 2012, 18, 309-314.	1.3	13
45	Disclosure of water roles in gliding arc plasma reforming of methanol for hydrogen production. Plasma Processes and Polymers, 2020, 17, 2000069.	3.0	12
46	Plasma catalytic removal of VOCs using cycled storage-discharge (CSD) mode: An assessment methodology based on toluene for reaction kinetics and intermediates. Chemical Engineering Journal, 2022, 433, 134338.	12.7	11
47	Understanding the chemical kinetics for plasma in liquid: Reaction mechanism of ethanol reforming in microwave discharge. International Journal of Hydrogen Energy, 2022, 47, 12841-12854.	7.1	10
48	Effect of ammoniaâ€derived species on visibleâ€light photocatalytic activity of Au supported on amorphous TiO ₂ activated by plasma. Plasma Processes and Polymers, 2018, 15, 1800095.	3.0	9
49	Insight into gliding arc (GA) plasma reduction of CO ₂ with H ₂ : GA characteristics and reaction mechanism. Journal Physics D: Applied Physics, 2019, 52, 284001.	2.8	9
50	Transformation of <i>n</i> -heptane using an in-liquid submerged microwave plasma jet of argon. Journal of Applied Physics, 2021, 129, .	2.5	7
51	Dynamic Evolution of 50-Hz Rotating Gliding Arc Discharge in a Vortex Air Flow. IEEE Transactions on Plasma Science, 2014, 42, 2704-2705.	1.3	6
52	Evaluation of plasma-derived heat and synergistic effect for in-plasma catalytic steam reforming of methanol. Journal Physics D: Applied Physics, 2020, 53, 104003.	2.8	6
53	Realâ€ŧime measurement of axial temperature in a coaxial dielectric barrier discharge reactor and synergistic effect evaluation for inâ€plasma catalytic CO ₂ reduction. Plasma Processes and Polymers, 2022, 19, .	3.0	6
54	Ozone catalytic oxidation for ammonia removal from simulated air at room temperature. Catalysis Science and Technology, 2015, 5, 2227-2237.	4.1	5

#	Article	IF	CITATIONS
55	Dimensionless factors for an alternating-current non-thermal arc plasma. Physics of Plasmas, 2016, 23, 120707.	1.9	5
56	Plasmochemical Approach to Templateâ€Free Synthesis of Highly Crystalline Mesoporous TiO ₂ within Milliseconds. ChemNanoMat, 2019, 5, 403-406.	2.8	5
57	Understanding arc behaviors and achieving the optimal mode in a magnetically-driven gliding arc plasma. Plasma Sources Science and Technology, 2020, 29, 015022.	3.1	5
58	Caudal autotomy and regeneration of arc in a 3D gliding arc discharge plasma. Journal Physics D: Applied Physics, 2021, 54, 305203.	2.8	4
59	Scenario of carbonâ€encapsulated particle synthesis by spark discharges in liquid hydrocarbons. Plasma Processes and Polymers, 2021, 18, 2100013.	3.0	2
60	Regeneration of deactivated Au/TiO <inf>2</inf> nanocatalysts during co oxidation by using in-situ O <inf>2</inf> and N <inf>2</inf> /O <inf>2</inf> plasma. , 2012, , .		0
61	On-Board Hydrogen Production: Warm Plasma Chain Catalysis. SSRN Electronic Journal, 0, , .	0.4	Ο