Jerome A Cuenca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7836718/publications.pdf Version: 2024-02-01

IEROME & CHENICA

#	Article	IF	CITATIONS
1	Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors. Diamond and Related Materials, 2022, 124, 108917.	1.8	10
2	Thermal stress modelling of diamond on GaN/III-Nitride membranes. Carbon, 2021, 174, 647-661.	5.4	19
3	Measurement Technique for Microwave Surface Resistance of Additive Manufactured Metals. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 189-197.	2.9	11
4	Surface zeta potential and diamond growth on gallium oxide single crystal. Carbon, 2021, 181, 79-86.	5.4	18
5	Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond. ACS Applied Materials & Interfaces, 2020, 12, 54138-54145.	4.0	38
6	Dielectric Spectroscopy of Hydrogen-Treated Hexagonal Boron Nitride Ceramics. ACS Applied Electronic Materials, 2020, 2, 1193-1202.	2.0	5
7	GaN-on-diamond technology platform: Bonding-free membrane manufacturing process. AIP Advances, 2020, 10, .	0.6	21
8	Evaluating the coefficient of thermal expansion of additive manufactured AlSi10Mg using microwave techniques. Additive Manufacturing, 2019, 30, 100841.	1.7	15
9	Thick, Adherent Diamond Films on AlN with Low Thermal Barrier Resistance. ACS Applied Materials & Interfaces, 2019, 11, 40826-40834.	4.0	45
10	Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nanoscale, 2019, 11, 10266-10272.	2.8	11
11	Microwave cavity perturbation of nitrogen doped nano-crystalline diamond films. Carbon, 2019, 145, 740-750.	5.4	19
12	Microwave Permittivity of Trace sp ² Carbon Impurities in Sub-Micron Diamond Powders. ACS Omega, 2018, 3, 2183-2192.	1.6	7
13	Microwave absorption properties of CoGd substituted ZnFe2O4 ferrites synthesized by co-precipitation technique. Ceramics International, 2018, 44, 5909-5914.	2.3	21
14	Temperature Correction for Cylindrical Cavity Perturbation Measurements. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 2153-2161.	2.9	15
15	Corrections to "Temperature Correction for Cylindrical Cavity Perturbation Measurements―[Jun 17 2153-2161]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 5078-5078.	2.9	1
16	Investigating the Broadband Microwave Absorption of Nanodiamond Impurities. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 4110-4118.	2.9	22
17	Microwave determination of sp2 carbon fraction in nanodiamond powders. Carbon, 2015, 81, 174-178.	5.4	32