Allimuthu T Dharmaraja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7836325/publications.pdf

Version: 2024-02-01

686830 794141 20 955 13 19 citations g-index h-index papers 21 21 21 1949 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancers of Human and Rodent Oligodendrocyte Formation Predominantly Induce Cholesterol Precursor Accumulation. ACS Chemical Biology, 2022, 17, 2188-2200.	1.6	5
2	Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation. Cell Chemical Biology, 2021, 28, 866-875.e5.	2.5	16
3	Screening Reveals Sterol Derivatives with Pro-Differentiation, Pro-Survival, or Potent Cytotoxic Effects on Oligodendrocyte Progenitor Cells. ACS Chemical Biology, 2021, 16, 1288-1297.	1.6	7
4	Chemoproteomics of an Indole-Based Quinone Epoxide Identifies Druggable Vulnerabilities in Vancomycin-Resistant <i>Staphylococcus aureus</i> . Journal of Medicinal Chemistry, 2019, 62, 6785-6795.	2.9	23
5	Diverse Chemical Scaffolds Enhance Oligodendrocyte Formation by Inhibiting CYP51, TM7SF2, or EBP. Cell Chemical Biology, 2019, 26, 593-599.e4.	2.5	24
6	Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature, 2018, 560, 372-376.	13.7	170
7	Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. Journal of Medicinal Chemistry, 2017, 60, 3221-3240.	2.9	394
8	2-Chloropropionamide As a Low-Reactivity Electrophile for Irreversible Small-Molecule Probe Identification. ACS Chemical Biology, 2017, 12, 2124-2131.	1.6	36
9	Novel chloroacetamido compound CWR-J02 is an anti-inflammatory glutaredoxin-1 inhibitor. PLoS ONE, 2017, 12, e0187991.	1.1	5
10	Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Radical Biology and Medicine, 2015, 84, 344-354.	1.3	68
11	Arylboronate Ester Based Diazeniumdiolates (BORO/NO), a Class of Hydrogen Peroxide Inducible Nitric Oxide (NO) Donors. Organic Letters, 2014, 16, 2610-2613.	2.4	29
12	A Small Molecule for Controlled Generation of Reactive Oxygen Species (ROS). Organic Letters, 2014, 16, 398-401.	2.4	33
13	Substituent Effects on Reactive Oxygen Species (ROS) Generation by Hydroquinones. Journal of Organic Chemistry, 2014, 79, 9413-9417.	1.7	8
14	A phenacrylate scaffold for tunable thiol activation and release. Chemical Communications, 2014, 50, 15323-15326.	2.2	5
15	Design, Synthesis and Study of Reactive Oxygen Species Generators as Mycobacterium Tuberculosis Inhibitors. Free Radical Biology and Medicine, 2012, 53, S103.	1.3	0
16	Design, synthesis and evaluation of small molecule reactive oxygen species generators as selective Mycobacterium tuberculosis inhibitors. Chemical Communications, 2012, 48, 10325.	2.2	36
17	Synthesis, thiol-mediated reactive oxygen species generation profiles and anti-proliferative activities of 2,3-epoxy-1,4-naphthoquinones. MedChemComm, 2012, 3, 219-224.	3.5	21
18	Synthesis, reactive oxygen species generation and copper-mediated nuclease activity profiles of 2-aryl-3-amino-1,4-naphthoquinones. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3766-3769.	1.0	13

#	Article	IF	CITATIONS
19	Mercury(II)–methylene blue interactions: Complexation and metallate formation. Inorganica Chimica Acta, 2007, 360, 1799-1808.	1.2	27
20	Extraction of fission palladium(II) from nitric acid by benzoylmethylenetriphenylphosphorane (BMTPP). Hydrometallurgy, 2006, 84, 118-124.	1.8	35