
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7836312/publications.pdf Version: 2024-02-01

RUVING LI

#	Article	IF	CITATIONS
1	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7, 13638.	5.8	1,521
2	High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy and Environmental Science, 2011, 4, 760.	15.6	1,153
3	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 2013, 3, .	1.6	719
4	Ultrathin MoS ₂ /Nitrogenâ€Đoped Graphene Nanosheets with Highly Reversible Lithium Storage. Advanced Energy Materials, 2013, 3, 839-844.	10.2	440
5	Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. Advanced Functional Materials, 2012, 22, 1647-1654.	7.8	384
6	Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nature Communications, 2019, 10, 4936.	5.8	371
7	Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy and Environmental Science, 2014, 7, 768-778.	15.6	363
8	Air-stable Li ₃ InCl ₆ electrolyte with high voltage compatibility for all-solid-state batteries. Energy and Environmental Science, 2019, 12, 2665-2671.	15.6	345
9	Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group?. Energy and Environmental Science, 2020, 13, 1318-1325.	15.6	342
10	Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy and Environmental Science, 2013, 6, 2900.	15.6	335
11	Promoting the Transformation of Li ₂ S ₂ to Li ₂ S: Significantly Increasing Utilization of Active Materials for Highâ€Sulfurâ€Loading Li–S Batteries. Advanced Materials, 2019, 31, e1901220.	11.1	303
12	Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. Advanced Materials, 2017, 29, 1606663.	11.1	273
13	Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy and Environmental Science, 2020, 13, 127-134.	15.6	269
14	Site-Occupation-Tuned Superionic Li _{<i>x</i>} ScCl _{3+<i>x</i>} Halide Solid Electrolytes for All-Solid-State Batteries. Journal of the American Chemical Society, 2020, 142, 7012-7022.	6.6	260
15	Inorganic–Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. Nano Letters, 2017, 17, 5653-5659.	4.5	243
16	Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area‧elective Atomic Layer Deposition for the Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 277-281.	11.1	238
17	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 16427-16432.	7.2	232
18	Nitrogen Doping Effects on Carbon Nanotubes and the Origin of the Enhanced Electrocatalytic Activity of Supported Pt for Proton-Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 3769-3776.	1.5	228

#	Article	IF	CITATIONS
19	Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2018, 10, 31240-31248.	4.0	207
20	A Novel Organic "Polyurea―Thin Film for Ultralong‣ife Lithiumâ€Metal Anodes via Molecular‣ayer Deposition. Advanced Materials, 2019, 31, e1806541.	11.1	204
21	LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy and Environmental Science, 2013, 6, 1521.	15.6	199
22	Cobaltâ€Doped SnS ₂ with Dual Active Centers of Synergistic Absorption atalysis Effect for Highâ€6 Loading Liâ€6 Batteries. Advanced Functional Materials, 2019, 29, 1806724.	7.8	186
23	Efficient Trapping and Catalytic Conversion of Polysulfides by VS ₄ Nanosites for Li–S Batteries. ACS Energy Letters, 2019, 4, 755-762.	8.8	185
24	A Versatile Snâ€5ubstituted Argyrodite Sulfide Electrolyte for Allâ€5olidâ€5tate Li Metal Batteries. Advanced Energy Materials, 2020, 10, 1903422.	10.2	183
25	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	8.8	176
26	A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nature Communications, 2018, 9, 4509.	5.8	175
27	Insight into MoS ₂ –MoN Heterostructure to Accelerate Polysulfide Conversion toward Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003314.	10.2	159
28	Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating. Nano Letters, 2016, 16, 3545-3549.	4.5	157
29	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	8.8	154
30	Solidâ€State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfideâ€Based Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1900392.	7.8	154
31	On rechargeability and reaction kinetics of sodium–air batteries. Energy and Environmental Science, 2014, 7, 3747-3757.	15.6	150
32	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	8.2	143
33	In Situ Li ₃ PS ₄ Solidâ€State Electrolyte Protection Layers for Superior Longâ€Life and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	11.1	140
34	Discharge product morphology and increased charge performance of lithium–oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. Journal of Materials Chemistry, 2012, 22, 20170.	6.7	136
35	A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nature Communications, 2021, 12, 176.	5.8	136
36	Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 7537.	6.7	135

#	Article	IF	CITATIONS
37	An Airâ€Stable and Dendriteâ€Free Li Anode for Highly Stable Allâ€Solidâ€State Sulfideâ€Based Li Batteries. Advanced Energy Materials, 2019, 9, 1902125.	10.2	133
38	Enhanced Performance of P2â€Na _{0.66} (Mn _{0.54} Co _{0.13} Ni _{0.13})O ₂ Cathode for Sodiumâ€ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition. Advanced Functional Materials, 2017, 27, 1701870.	7.8	128
39	Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. ACS Applied Materials & Interfaces, 2018, 10, 39794-39801.	4.0	126
40	Li ₁₀ Ge(P _{1–<i>x</i>} Sb <i>_x</i>) ₂ S ₁₂ Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chemistry of Materials, 2020, 32, 2664-2672.	3.2	125
41	Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy, 2018, 54, 375-382.	8.2	123
42	Highâ€Performance Li–SeS <i>_x</i> Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 201 31, e1808100.	9, _{11.1}	121
43	Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts. Energy and Environmental Science, 2015, 8, 1450-1455.	15.6	120
44	Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as Highâ€Performance Cathode. Advanced Materials, 2017, 29, 1703764.	11.1	119
45	Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. Small, 2020, 16, e2003096.	5.2	110
46	Pt/Pd Single-Atom Alloys as Highly Active Electrochemical Catalysts and the Origin of Enhanced Activity. ACS Catalysis, 2019, 9, 9350-9358.	5.5	106
47	High Capacity, Dendriteâ€Free Growth, and Minimum Volume Change Na Metal Anode. Small, 2018, 14, e1703717.	5.2	104
48	Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. Journal of Power Sources, 2016, 302, 174-179.	4.0	100
49	High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy and Environmental Science, 2018, 11, 2828-2832.	15.6	99
50	Active and Stable Pt–Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. ACS Catalysis, 2020, 10, 4205-4214.	5.5	98
51	Highly Stable Na _{2/3} (Mn _{0.54} Ni _{0.13} Co _{0.13})O ₂ Cathode Modified by Atomic Layer Deposition for Sodiumâ€lon Batteries. ChemSusChem, 2015, 8, 2537-2543.	3.6	97
52	Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Nextâ€Generation Battery Systems. Angewandte Chemie - International Edition, 2019, 58, 15797-15802.	7.2	96
53	Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts. Materials Horizons, 2017, 4, 900-907.	6.4	95
54	Origin of Superionic Li ₃ Y _{1–<i>x</i>} In _{<i>x</i>} Cl ₆ Halide Solid Electrolytes with High Humidity Tolerance. Nano Letters, 2020, 20, 4384-4392.	4.5	94

#	Article	IF	CITATIONS
55	Surface aging at olivine LiFePO ₄ : a direct visual observation of iron dissolution and the protection role of nano-carbon coating. Journal of Materials Chemistry A, 2013, 1, 1579-1586.	5.2	93
56	Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. Journal of Physical Chemistry C, 2014, 118, 881-890.	1.5	93
57	A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Science Advances, 2021, 7, eabh1896.	4.7	93
58	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie, 2019, 131, 16579-16584.	1.6	92
59	Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. Journal of Materials Chemistry, 2012, 22, 18847.	6.7	91
60	Unveiling the Nature of Pt Singleâ€Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. Small, 2021, 17, e2007245.	5.2	91
61	Manipulating Interfacial Nanostructure to Achieve Highâ€Performance Allâ€Solidâ€State Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900261.	4.6	90
62	Three-Dimensional Nanostructured Air Electrode for Sodium–Oxygen Batteries: A Mechanism Study toward the Cyclability of the Cell. Chemistry of Materials, 2015, 27, 3040-3047.	3.2	86
63	Atomic Layer Deposition of Lithium Niobium Oxides as Potential Solid-State Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1654-1661.	4.0	85
64	Robust Metallic Lithium Anode Protection by the Molecular‣ayerâ€Deposition Technique. Small Methods, 2018, 2, 1700417.	4.6	84
65	Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4954-4961.	4.0	83
66	A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nature Communications, 2021, 12, 6806.	5.8	81
67	Eliminating the Detrimental Effects of Conductive Agents in Sulfide-Based Solid-State Batteries. ACS Energy Letters, 2020, 5, 1243-1251.	8.8	80
68	Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. Journal of Materials Chemistry A, 2014, 2, 2306.	5.2	78
69	Advanced Support Materials and Interactions for Atomically Dispersed Nobleâ€Metal Catalysts: From Support Effects to Design Strategies. Advanced Energy Materials, 2022, 12, 2102556.	10.2	78
70	Stabilization of all-solid-state Li–S batteries with a polymer–ceramic sandwich electrolyte by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 23712-23719.	5.2	77
71	Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries. ACS Energy Letters, 2020, 5, 2156-2164.	8.8	76
72	Non-Aqueous Approach to Synthesize Amorphous/Crystalline Metal Oxide-Graphene Nanosheet Hybrid Composites. Journal of Physical Chemistry C, 2010, 114, 18330-18337.	1.5	75

#	Article	IF	CITATIONS
73	Tailoring interactions of carbon and sulfur in Li–S battery cathodes: significant effects of carbon–heteroatom bonds. Journal of Materials Chemistry A, 2014, 2, 12866.	5.2	75
74	Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO ₂ batteries. Journal of Materials Chemistry A, 2020, 8, 2769-2776.	5.2	72
75	Unraveling the Origin of Moisture Stability of Halide Solid-State Electrolytes by <i>In Situ</i> and <i>Operando</i> Synchrotron X-ray Analytical Techniques. Chemistry of Materials, 2020, 32, 7019-7027.	3.2	69
76	Toward a Sodium–"Air―Battery: Revealing the Critical Role of Humidity. Journal of Physical Chemistry C, 2015, 119, 13433-13441.	1.5	66
77	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	10.2	64
78	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100210.	10.2	63
79	Synchrotronâ€Based Xâ€ray Absorption Fine Structures, Xâ€ray Diffraction, and Xâ€ray Microscopy Techniques Applied in the Study of Lithium Secondary Batteries. Small Methods, 2018, 2, 1700341.	4.6	62
80	Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 31786-31793.	4.0	58
81	A bifunctional solid state catalyst with enhanced cycling stability for Na and Li–O ₂ cells: revealing the role of solid state catalysts. Energy and Environmental Science, 2017, 10, 286-295.	15.6	55
82	Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes. RSC Advances, 2013, 3, 7285.	1.7	54
83	Temperatureâ€Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotronâ€Based Imaging Techniques. Advanced Materials, 2020, 32, e2002550.	11.1	53
84	Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solidâ€State Na Metal Batteries. Advanced Functional Materials, 2020, 30, 2001118.	7.8	53
85	<i>In situ</i> formation of highly controllable and stable Na ₃ PS ₄ as a protective layer for Na metal anode. Journal of Materials Chemistry A, 2019, 7, 4119-4125.	5.2	51
86	Highly Stable Halideâ€Electrolyteâ€Based Allâ€Solidâ€State Li–Se Batteries. Advanced Materials, 2022, 34, e2200856.	11.1	50
87	The application of carbon materials in nonaqueous Naâ€O ₂ batteries. , 2019, 1, 141-164.		49
88	Origin of High Ionic Conductivity of Scâ€Doped Sodiumâ€Rich NASICON Solidâ€State Electrolytes. Advanced Functional Materials, 2021, 31, 2102129.	7.8	49
89	Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. Journal of Materials Chemistry A, 2017, 5, 9760-9767.	5.2	48
90	Regulated lithium plating and stripping by a nano-scale gradient inorganic–organic coating for stable lithium metal anodes. Energy and Environmental Science, 2021, 14, 4085-4094.	15.6	48

#	Article	IF	CITATIONS
91	Interaction of Carbon Coating on LiFePO ₄ : A Local Visualization Study of the Influence of Impurity Phases. Advanced Functional Materials, 2013, 23, 806-814.	7.8	47
92	High-Performance and Recyclable Al-Air Coin Cells Based on Eco-friendly Chitosan Hydrogel Membranes. ACS Applied Materials & Interfaces, 2018, 10, 19730-19738.	4.0	47
93	Ultralow Loading and High-Performing Pt Catalyst for a Polymer Electrolyte Membrane Fuel Cell Anode Achieved by Atomic Layer Deposition. ACS Catalysis, 2019, 9, 5365-5374.	5.5	47
94	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€State Liâ€O ₂ Batteries. Angewandte Chemie - Internati Edition, 2021, 60, 5821-5826.	onale	47
95	Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. Journal of Materials Chemistry, 2011, 21, 12321.	6.7	46
96	Sizeâ€Mediated Recurring Spinel Subâ€nanodomains in Li―and Mnâ€Rich Layered Cathode Materials. Angewandte Chemie - International Edition, 2020, 59, 14313-14320.	7.2	46
97	Stable Silicon Anodes by Molecular Layer Deposited Artificial Zincone Coatings. Advanced Functional Materials, 2021, 31, 2010526.	7.8	46
98	Realizing Solidâ€Phase Reaction in Li–S Batteries via Localized High oncentration Carbonate Electrolyte. Advanced Energy Materials, 2021, 11, 2101004.	10.2	46
99	Utilizing the full capacity of carbon black as anode for Na-ion batteries via solvent co-intercalation. Nano Research, 2017, 10, 4378-4387.	5.8	45
100	New Insights into the Highâ€Performance Black Phosphorus Anode for Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2101259.	11.1	41
101	Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: effects of surface functionalization and nitrogen-doping. Journal of Nanoparticle Research, 2011, 13, 1207-1218.	0.8	40
102	Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries. ACS Applied Materials & Interfaces, 2019, 11, 32826-32832.	4.0	39
103	3D boron doped carbon nanorods/carbon-microfiber hybrid composites: synthesis and applications in a highly stable proton exchange membrane fuel cell. Journal of Materials Chemistry, 2011, 21, 18195.	6.7	38
104	Nanoscale stabilization of Li–sulfur batteries by atomic layer deposited Al2O3. RSC Advances, 2014, 4, 27126.	1.7	38
105	New Insight of Pyrroleâ€Like Nitrogen for Boosting Hydrogen Evolution Activity and Stability of Pt Single Atoms. Small, 2021, 17, e2004453.	5.2	38
106	Revealing the charge/discharge mechanism of Na–O ₂ cells by <i>in situ</i> soft X-ray absorption spectroscopy. Energy and Environmental Science, 2018, 11, 2073-2077.	15.6	37
107	On the Cycling Performance of Naâ€O ₂ Cells: Revealing the Impact of the Superoxide Crossover toward the Metallic Na Electrode. Advanced Functional Materials, 2018, 28, 1801904.	7.8	37
108	Recent advances and strategies in the stabilization of singleâ€atom catalysts for electrochemical applications. , 2020, 2, 488-520.		37

#	Article	IF	CITATIONS
109	Thermal and chemical durability of nitrogen-doped carbon nanotubes. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	36
110	How to Control the Discharge Products in Na–O ₂ Cells: Direct Evidence toward the Role of Functional Groups at the Air Electrode Surface. Journal of Physical Chemistry Letters, 2017, 8, 4794-4800.	2.1	36
111	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	10.2	36
112	Ultralongâ€Life Quasiâ€Solidâ€State Liâ€O ₂ Batteries Enabled by Coupling Advanced Air Electrode Design with Li Metal Anode Protection. Small Methods, 2019, 3, 1800437.	4.6	35
113	Implanting CNT Forest onto Carbon Nanosheets as Multifunctional Hosts for Highâ€Performance Lithium Metal Batteries. Small Methods, 2019, 3, 1800546.	4.6	34
114	Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers. ACS Applied Materials & Interfaces, 2021, 13, 4093-4101.	4.0	34
115	Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 24281-24288.	5.2	32
116	Multi-functional nanowall arrays with unrestricted Li ⁺ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 22958-22965.	5.2	31
117	Selective atomic layer deposition of RuO _x catalysts on shape-controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. Journal of Materials Chemistry A, 2018, 6, 24397-24406.	5.2	31
118	Visualizing the Oxidation Mechanism and Morphological Evolution of the Cubicâ€Shaped Superoxide Discharge Product in Na–Air Batteries. Advanced Functional Materials, 2019, 29, 1808332.	7.8	30
119	Understanding the Critical Role of Binders in Phosphorus/Carbon Anode for Sodiumâ€lon Batteries through Unexpected Mechanism. Advanced Functional Materials, 2020, 30, 2000060.	7.8	29
120	Insight into Ion Diffusion Dynamics/Mechanisms and Electronic Structure of Highly Conductive Sodium-Rich Na _{3+<i>x</i>} La _{<i>x</i>} Zr _{2–<i>x</i>} Si ₂ PO ₁₂ (0 ≤i>x ≤0.5) Solid-State Electrolytes. ACS Applied Materials & amp; Interfaces, 2021, 13, 13132-13138	4.0 3.	27
121	Atomic layer deposited aluminium phosphate thin films on N-doped CNTs. RSC Advances, 2013, 3, 4492.	1.7	26
122	Titanium Dioxide/Lithium Phosphate Nanocomposite Derived from Atomic Layer Deposition as a Highâ€Performance Anode for Lithium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600369.	1.9	26
123	Unveiling the Interfacial Instability of the Phosphorus/Carbon Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30763-30773.	4.0	26
124	Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 24830-24836.	5.2	26
125	A facile route to synthesize titanium oxide nanowires via water-assisted chemical vapor deposition. Journal of Nanoparticle Research, 2011, 13, 385-391.	0.8	24
126	O ₂ /O ₂ [–] Crossover- and Dendrite-Free Hybrid Solid-State Na–O ₂ Batteries. Chemistry of Materials, 2019, 31, 9024-9031.	3.2	24

#	Article	IF	CITATIONS
127	Fast Charging All Solid tate Lithium Batteries Enabled by Rational Design of Dual Verticallyâ€Aligned Electrodes. Advanced Functional Materials, 2020, 30, 2005357.	7.8	24
128	Revealing the Chemical Mechanism of NaO ₂ Decomposition by In Situ Raman Imaging. Chemistry of Materials, 2018, 30, 5156-5160.	3.2	23
129	Enhancing metal–support interaction by in situ ion-exchanging strategy for high performance Pt catalysts in hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 16582-16589.	5.2	22
130	Reviving Anode Protection Layer in Naâ€O ₂ Batteries: Failure Mechanism and Resolving Strategy. Advanced Energy Materials, 2021, 11, 2003789.	10.2	22
131	Atomic Layer Deposition of Hierarchical CNTs@FePO ₄ Architecture as a 3D Electrode for Lithiumâ€ion and Sodiumâ€ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600468.	1.9	21
132	Aligning the binder effect on sodium–air batteries. Journal of Materials Chemistry A, 2018, 6, 1473-1484.	5.2	21
133	Fast harging Halideâ€Based Allâ€Solidâ€State Batteries by Manipulation of Current Collector Interface. Advanced Functional Materials, 2022, 32, .	7.8	20
134	Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Nextâ€Generation Battery Systems. Angewandte Chemie, 2019, 131, 15944-15949.	1.6	18
135	Phase Evolution of a Prenucleator for Fast Li Nucleation in Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 2001191.	10.2	17
136	Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by Scanning Transmission X-ray Microscopy. Chemistry of Materials, 2020, 32, 1272-1280.	3.2	17
137	A study on the bactericidal properties of Cu-coated carbon nanotubes. Frontiers of Materials Science in China, 2007, 1, 147-150.	0.5	16
138	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€State Liâ€O ₂ Batteries. Angewandte Chemie, 2021, 133 5885-5890.	8, 1.6	14
139	Batteries: Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage (Adv. Funct. Mater. 8/2012). Advanced Functional Materials, 2012, 22, 1646-1646.	7.8	13
140	Engineering Surface Oxygenated Functionalities on Commercial Carbon toward Ultrafast Sodium Storage in Ether-Based Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 37116-37127.	4.0	13
141	Phosphorene Nanosheets Exfoliated from Low-Cost and High-Quality Black Phosphorus for Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 7508-7515.	2.4	13
142	Realizing Highâ€Performance Liâ€& Batteries through Additive Manufactured and Chemically Enhanced Cathodes. Small Methods, 2021, 5, e2100176.	4.6	12
143	Enhancement of PEMFC performance by using carbon nanotubes supported PtCo alloy catalysts. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 12-16.	0.8	10
144	One-step in situ synthesis and characterization of W ₁₈ O ₄₉ @carbon coaxial nanocables. Journal of Materials Research, 2009, 24, 1833-1841.	1.2	9

#	Article	IF	CITATIONS
145	A facile approach to synthesize poly(4-vinylpyridine)/multi-walled carbon nanotubes nanocomposites: highly water-dispersible carbon nanotubes decorated with gold nanoparticles. Colloid and Polymer Science, 2011, 289, 783-789.	1.0	9
146	Sizeâ€Mediated Recurring Spinel Subâ€nanodomains in Li―and Mnâ€Rich Layered Cathode Materials. Angewandte Chemie, 2020, 132, 14419-14426.	1.6	9
147	Pt/TiSi _{<i>x</i>} -NCNT Novel Janus Nanostructure: A New Type of High-Performance Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 10771-10777.	4.0	8
148	Revealing Dopant Local Structure of Se-Doped Black Phosphorus. Chemistry of Materials, 2021, 33, 2029-2036.	3.2	8
149	Inside Cover: Direct Growth of Single-Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts (Chem. Eur. J. 3/2010). Chemistry - A European Journal, 2010, 16, 732-732.	1.7	7
150	A liquid-free poly(butylene oxide) electrolyte for near-room-temperature and 4-V class all-solid-state lithium batteries. Nano Energy, 2021, 90, 106566.	8.2	7
151	Lithium-Ion Batteries: Rational Design of Atomic-Layer-Deposited LiFePO4as a High-Performance Cathode for Lithium-Ion Batteries (Adv. Mater. 37/2014). Advanced Materials, 2014, 26, 6358-6358.	11.1	5
152	Self-assembly synthesis and mechanism investigation of branched core–shell hybrids of tin nanowires and carbon nanotubes. Journal of Materials Research, 2013, 28, 969-975.	1.2	3
153	Hierarchical Hybrid of Few-Layer Graphene upon Tungsten Monocarbide Nanowires: Controlled Synthesis and Electrocatalytic Performance for Methanol Oxidation. ACS Applied Energy Materials, 2019, 2, 328-337.	2.5	3
154	Titelbild: A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal (Angew. Chem. 2/2011). Angewandte Chemie, 2011, 123, 341-341.	1.6	2
155	Facile Synthesis of Crystalline SnO ₂ Nanowires on Various Current Collector Substrates. Journal of the Chinese Chemical Society, 2012, 59, 1288-1293.	0.8	2
156	Visualization of the secondary phase in LiFePO4 ingots with advanced mapping techniques. Canadian Journal of Chemical Engineering, 2019, 97, 2218-2223.	0.9	2
157	Cover Picture: A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal (Angew. Chem. Int. Ed. 2/2011). Angewandte Chemie - International Edition, 2011, 50, 325-325.	7.2	1
158	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. , 0, .		1
159	Batteries: Atomic Layer Deposition of Hierarchical CNTs@FePO4 Architecture as a 3D Electrode for Lithium-Ion and Sodium-Ion Batteries (Adv. Mater. Interfaces 21/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0

160 Rücktitelbild: Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf