
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7836166/publications.pdf Version: 2024-02-01



YUWAL COLAN

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The role of interparticle and external forces in nanoparticle assembly. Nature Materials, 2008, 7, 527-538.                                                                                                            | 27.5 | 1,049     |
| 2  | Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nature Physics, 2009, 5, 811-814.                                                                                                                | 16.7 | 245       |
| 3  | Vacuum-deposited gold films. Surface Science, 1992, 264, 312-326.                                                                                                                                                      | 1.9  | 168       |
| 4  | New Nanocrystalline Materials: A Previously Unknown Simple Cubic Phase in the SnS Binary System.<br>Nano Letters, 2015, 15, 2174-2179.                                                                                 | 9.1  | 126       |
| 5  | Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide. RSC Advances, 2016, 6, 5848-5855.                                                                                               | 3.6  | 124       |
| 6  | Superior Biolubricant from a Species of Red Microalga. Langmuir, 2006, 22, 7313-7317.                                                                                                                                  | 3.5  | 112       |
| 7  | A Semiconductor-Nanowire Assembly of Ultrahigh Junction Density by the Langmuir-Blodgett<br>Technique. Advanced Materials, 2006, 18, 210-213.                                                                          | 21.0 | 109       |
| 8  | Structural and optical properties of GaN laterally overgrown on Si(111) by metalorganic chemical<br>vapor deposition using an AlN buffer layer. MRS Internet Journal of Nitride Semiconductor Research,<br>1999, 4, 1. | 1.0  | 107       |
| 9  | Raman Spectroscopy of Ultranarrow CdS Nanostructures. Journal of Physical Chemistry C, 2007, 111, 11843-11848.                                                                                                         | 3.1  | 104       |
| 10 | The Effect of Growth Environment on the Morphological and Extended Defect Evolution in GaN<br>Grown by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1998, 37,<br>4460-4466.            | 1.5  | 101       |
| 11 | Synthesis, Two-Dimensional Assembly, and Surface Pressure-Induced Coalescence of Ultranarrow PbS<br>Nanowires. Nano Letters, 2007, 7, 1459-1462.                                                                       | 9.1  | 100       |
| 12 | Epitaxial electrodeposition of cadmium selenide nanocrystals on gold. Langmuir, 1992, 8, 749-752.                                                                                                                      | 3.5  | 97        |
| 13 | Structural Transitions in Polydiacetylene Langmuir Films. Langmuir, 2009, 25, 4469-4477.                                                                                                                               | 3.5  | 90        |
| 14 | A Bottom-Up Approach toward Fabrication of Ultrathin PbS Sheets. Nano Letters, 2013, 13, 409-415.                                                                                                                      | 9.1  | 90        |
| 15 | Microtribology and Direct Force Measurement of WS2 Nested Fullerene-Like Nanostructures.<br>Advanced Materials, 1999, 11, 934-937.                                                                                     | 21.0 | 83        |
| 16 | Ultra Narrow PbS Nanorods with Intense Fluorescence. Journal of the American Chemical Society, 2008, 130, 4594-4595.                                                                                                   | 13.7 | 83        |
| 17 | Synthesis, Assembly, and Optical Properties of Shape- and Phase-Controlled ZnSe Nanostructures.<br>Langmuir, 2007, 23, 765-770.                                                                                        | 3.5  | 82        |
| 18 | Switchable Assembly of Ultra Narrow CdS Nanowires and Nanorods. Journal of the American<br>Chemical Society, 2006, 128, 9294-9295.                                                                                     | 13.7 | 80        |

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Crystal structure of a large cubic tin monosulfide polymorph: an unraveled puzzle. CrystEngComm, 2016, 18, 5188-5194.                                                                       | 2.6  | 76        |
| 20 | Frictional Properties of Confined Nanorods. Advanced Materials, 2006, 18, 2589-2592.                                                                                                        | 21.0 | 74        |
| 21 | Shape-Dependent Confinement in Ultrasmall Zero-, One-, and Two-Dimensional PbS Nanostructures.<br>Journal of the American Chemical Society, 2009, 131, 11282-11283.                         | 13.7 | 73        |
| 22 | Origin of the Contact Angle Hysteresis of Water on Chemisorbed and Physisorbed Self-Assembled<br>Monolayers. Langmuir, 2012, 28, 14609-14617.                                               | 3.5  | 68        |
| 23 | Microtribology and Friction-Induced Material Transfer in WS2 Nanoparticle Additives. Advanced<br>Functional Materials, 2001, 11, 348-354.                                                   | 14.9 | 64        |
| 24 | Electrodeposited quantum dots. Surface Science, 1994, 311, L633-L640.                                                                                                                       | 1.9  | 60        |
| 25 | Polarization Properties and Switchable Assembly of Ultranarrow ZnSe Nanorods. Advanced<br>Materials, 2007, 19, 1105-1108.                                                                   | 21.0 | 60        |
| 26 | Morphology and microstructural evolution in the early stages of hydride vapor phase epitaxy of GaN<br>on sapphire. Applied Physics Letters, 1998, 73, 3090-3092.                            | 3.3  | 59        |
| 27 | Atomic Positional Versus Electronic Order in Semiconducting ZnSe Nanoparticles. Physical Review<br>Letters, 2009, 103, 136802.                                                              | 7.8  | 59        |
| 28 | A new nanocrystalline binary phase: synthesis and properties of cubic tin monoselenide.<br>CrystEngComm, 2016, 18, 1918-1923.                                                               | 2.6  | 59        |
| 29 | Electrodeposited Quantum Dots. 3. Interfacial Factors Controlling the Morphology, Size, and Epitaxy.<br>The Journal of Physical Chemistry, 1996, 100, 2220-2228.                            | 2.9  | 57        |
| 30 | Adhesion and Stable Low Friction Provided by a Subnanometer-Thick Monolayer of a Natural<br>Polysaccharide. Langmuir, 2008, 24, 1534-1540.                                                  | 3.5  | 56        |
| 31 | EPITAXY and orientation control in chemical solution deposited PbS and PbSe monocrystalline films.<br>Journal of Crystal Growth, 2007, 304, 169-178.                                        | 1.5  | 48        |
| 32 | Forces between Surfaces across Nanoparticle Solutions:Â Role of Size, Shape, and Concentration.<br>Langmuir, 2007, 23, 3961-3969.                                                           | 3.5  | 47        |
| 33 | The role of solution composition in chemical bath deposition of epitaxial thin films of PbS on GaAs(100). Journal of Crystal Growth, 2007, 308, 334-339.                                    | 1.5  | 44        |
| 34 | Direct Observation of Shear-Induced Orientational Phase Coexistence in a Lyotropic System Using a<br>Modified X-Ray Surface Forces Apparatus. Physical Review Letters, 2001, 86, 1263-1266. | 7.8  | 42        |
| 35 | Size shift of XPS lines observed from PbS nanocrystals. Surface and Interface Analysis, 2010, 42,<br>850-854.                                                                               | 1.8  | 42        |
| 36 | Hierarchical Assembly of Ultranarrow Alkylamine-Coated ZnS Nanorods: A Synchrotron Surface X-Ray<br>Diffraction Study. Nano Letters, 2008, 8, 3858-3864.                                    | 9.1  | 39        |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A new cubic prototype structure in the IV–VI monochalcogenide system: a DFT study. CrystEngComm,<br>2017, 19, 1751-1761.                                                                          | 2.6  | 39        |
| 38 | Electrochemical characterization and morphological studies of palladium-modified carbon ceramic electrodes. Journal of Electroanalytical Chemistry, 1995, 395, 57-66.                             | 3.8  | 38        |
| 39 | Forces between Surfactant-Coated ZnS Nanoparticles in Dodecane: Effect of Water. Advanced<br>Functional Materials, 2006, 16, 2127-2134.                                                           | 14.9 | 36        |
| 40 | Reaction of Alkylamine Surfactants with Carbon Dioxide: Relevance to Nanocrystal Synthesis. Nano<br>Letters, 2009, 9, 2088-2093.                                                                  | 9.1  | 36        |
| 41 | Microstructure and morphology evolution in chemical solution deposited PbSe films on GaAs(100).<br>EPJ Applied Physics, 2003, 24, 13-20.                                                          | 0.7  | 35        |
| 42 | Chemically deposited PbSe thin films: factors deterring reproducibility in the early stages of growth.<br>CrystEngComm, 2014, 16, 10553-10559.                                                    | 2.6  | 35        |
| 43 | Controlled Deposition of Oriented PbS Nanocrystals on Ultrathin Polydiacetylene Templates at the Airâ^'Solution Interface. Langmuir, 2003, 19, 10962-10966.                                       | 3.5  | 34        |
| 44 | The Temperature-Dependent Structure of Alkylamines and Their Corresponding<br>Alkylammonium-Alkylcarbamates. Journal of the American Chemical Society, 2009, 131, 9107-9113.                      | 13.7 | 34        |
| 45 | A comparative study of the structure and optical properties of copper sulfide thin films chemically deposited on various substrates. RSC Advances, 2013, 3, 23066.                                | 3.6  | 34        |
| 46 | Chemical epitaxy of semiconductor thin films. MRS Bulletin, 2010, 35, 790-796.                                                                                                                    | 3.5  | 33        |
| 47 | Phase transition kinetics in Langmuir and spin-coated polydiacetylene films. Physical Chemistry Chemical Physics, 2010, 12, 713-722.                                                              | 2.8  | 33        |
| 48 | Epitaxial size control by mismatch tuning in electrodeposited Cd(Se, Te) quantum dots on {111} gold.<br>Advanced Materials, 1996, 8, 631-633.                                                     | 21.0 | 32        |
| 49 | Nanocrystalline Ag2S on Polydiacetylene Langmuir Films. Crystal Growth and Design, 2005, 5, 439-443.                                                                                              | 3.0  | 31        |
| 50 | Oneâ€Pot Hydrothermal Synthesis of Elements (B, N, P)â€Doped Fluorescent Carbon Dots for Cell<br>Labelling, Differentiation and Outgrowth of Neuronal Cells. ChemistrySelect, 2019, 4, 4222-4232. | 1.5  | 29        |
| 51 | Chemically deposited PbS thin film photo-conducting layers for optically addressed spatial light modulators. Journal of Materials Chemistry C, 2014, 2, 9132-9140.                                | 5.5  | 28        |
| 52 | Dynamics of Hydration of Nanocellulose Films. Advanced Materials Interfaces, 2016, 3, 1500415.                                                                                                    | 3.7  | 28        |
| 53 | Role of sonication pre-treatment and cation valence in the sol-gel transition of nano-cellulose suspensions. Scientific Reports, 2017, 7, 11129.                                                  | 3.3  | 28        |
| 54 | In situ imaging of shearing contacts in the surface forces apparatus. Wear, 2000, 245, 190-195.                                                                                                   | 3.1  | 27        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Microstructure and morphology evolution in chemically deposited semiconductor films: 4. From isolated nanoparticles to monocrystalline PbS thin films on GaAs(100) substrates. EPJ Applied Physics, 2007, 37, 39-47. | 0.7  | 27        |
| 56 | Ï€â€Phase Tin and Germanium Monochalcogenide Semiconductors: An Emerging Materials System.<br>Advanced Materials, 2018, 30, e1706285.                                                                                | 21.0 | 26        |
| 57 | Microstructure and morphology evolution in chemical solution deposited semiconductor films: 2.<br>PbSe on As face of GaAs(111). EPJ Applied Physics, 2004, 28, 51-57.                                                | 0.7  | 25        |
| 58 | Real Time Monitoring of the Deposition Mechanism in Chemical Solution Deposited PbSe Films Using<br>Light Scattering. Chemistry of Materials, 2006, 18, 3593-3595.                                                   | 6.7  | 25        |
| 59 | Frictional Properties of Surfactant-Coated Rod-Shaped Nanoparticles in Dry and Humid Dodecane.<br>Journal of Physical Chemistry B, 2008, 112, 14395-14401.                                                           | 2.6  | 25        |
| 60 | In situ monitoring the role of citrate in chemical bath deposition of PbS thin films. CrystEngComm, 2016, 18, 149-156.                                                                                               | 2.6  | 25        |
| 61 | Transmission electron microscopy of epitaxial PbS nanocrystals on polydiacetylene Langmuir films.<br>Nanotechnology, 2004, 15, S316-S321.                                                                            | 2.6  | 24        |
| 62 | Chemically Programmed Ultrahigh Density Two-Dimensional Semiconductor Superlattice Array.<br>Journal of the American Chemical Society, 2010, 132, 1212-1213.                                                         | 13.7 | 24        |
| 63 | Zinc modified polydiacetylene Langmuir films. Soft Matter, 2011, 7, 9069.                                                                                                                                            | 2.7  | 24        |
| 64 | Chemical bath deposited PbS thin films on ZnO nanowires for photovoltaic applications. Thin Solid<br>Films, 2014, 550, 149-155.                                                                                      | 1.8  | 24        |
| 65 | Phonon band gaps in the IV-VI monochalcogenides. Physical Review B, 2019, 100, .                                                                                                                                     | 3.2  | 24        |
| 66 | Generic Substrate for the Surface Forces Apparatus:Â Deposition and Characterization of Silicon<br>Nitride Surfaces. Langmuir, 2000, 16, 6955-6960.                                                                  | 3.5  | 23        |
| 67 | Enhanced photoluminescence and photonic bandgap modification from composite photonic crystals of macroporous silicon and nanocrystalline PbS thin films. Applied Physics Letters, 2008, 93, 073111.                  | 3.3  | 23        |
| 68 | The x-ray surface forces apparatus for simultaneous x-ray diffraction and direct normal and lateral force measurements. Review of Scientific Instruments, 2002, 73, 2486-2488.                                       | 1.3  | 22        |
| 69 | Microstructure and morphology evolution in chemical solution deposited semiconductor films: 3.<br>PbSe on GaAs vs. Si substrate. EPJ Applied Physics, 2005, 31, 27-30.                                               | 0.7  | 22        |
| 70 | Chemical solution deposited PbS thin films on Si(100). Physica Status Solidi C: Current Topics in Solid<br>State Physics, 2008, 5, 3431-3436.                                                                        | 0.8  | 22        |
| 71 | Electrodeposited quantum dots IV. Epitaxial short-range order in amorphous semiconductor nanostructures. Surface Science, 1996, 350, 277-284.                                                                        | 1.9  | 21        |
| 72 | Normal and Shear Forces Generated during the Ordering (Directed Assembly) of Confined Straight<br>and Curved Nanowires. Nano Letters, 2008, 8, 246-252.                                                              | 9.1  | 21        |

YUVAL GOLAN

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Surface Termination Control in Chemically Deposited PbS Films: Nucleation and Growth on GaAs(111)A and GaAs(111)B. Journal of Physical Chemistry C, 2011, 115, 16501-16508.                           | 3.1  | 21        |
| 74 | CuS Nanoparticle Additives for Enhanced Ester Lubricant Performance. ACS Applied Nano Materials, 2018, 1, 7060-7065.                                                                                  | 5.0  | 21        |
| 75 | Effect of carbon implantation on visible luminescence and composition of Si-implanted SiO2 layers.<br>Surface and Coatings Technology, 2009, 203, 2658-2663.                                          | 4.8  | 20        |
| 76 | Electrodeposited quantum dots: Coherent nanocrystalline cdse on oriented polycrystalline au films.<br>Advanced Materials, 1997, 9, 236-238.                                                           | 21.0 | 19        |
| 77 | Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications.<br>Optical Materials, 2011, 33, 695-701.                                                               | 3.6  | 19        |
| 78 | Effect of Metal Cations on Polydiacetylene Langmuir Films. Langmuir, 2012, 28, 4248-4258.                                                                                                             | 3.5  | 18        |
| 79 | Surface plasmon resonance in surfactant coated copper sulfide nanoparticles: Role of the structure of the capping agent. Journal of Colloid and Interface Science, 2015, 457, 43-51.                  | 9.4  | 18        |
| 80 | Vacuumâ€Deposited Gold Films: II . Role of the Crystallographic Orientation of Oxideâ€Covered Silicon<br>Substrates. Journal of the Electrochemical Society, 1995, 142, 1629-1633.                    | 2.9  | 17        |
| 81 | Template Growth of Nanocrystalline PbS, CdS, and ZnS on a Polydiacetylene Langmuir Film: An In Situ<br>Grazing Incidence X-ray Diffraction Study. Advanced Functional Materials, 2006, 16, 2398-2404. | 14.9 | 17        |
| 82 | Hierarchical superstructure of alkylamine-coated ZnS nanoparticle assemblies. Physical Chemistry<br>Chemical Physics, 2011, 13, 4974.                                                                 | 2.8  | 17        |
| 83 | Oriented Attachment: A Path to Columnar Morphology in Chemical Bath Deposited PbSe Thin Films.<br>Crystal Growth and Design, 2018, 18, 1227-1235.                                                     | 3.0  | 17        |
| 84 | Chemical epitaxy of π-phase cubic tin monosulphide. CrystEngComm, 2020, 22, 6170-6181.                                                                                                                | 2.6  | 17        |
| 85 | Substrate Reactivity and "Controlled Contamination―in Metalorganic Chemical Vapor Deposition of<br>GaN on Sapphire. Japanese Journal of Applied Physics, 1998, 37, 4695-4703.                         | 1.5  | 16        |
| 86 | Enhanced SWIR absorption in chemical bath deposited PbS thin films alloyed with thorium and oxygen.<br>RSC Advances, 2016, 6, 88077-88084.                                                            | 3.6  | 16        |
| 87 | Electric Response of CuS Nanoparticle Lubricant Additives: The Effect of Crystalline and Amorphous<br>Octadecylamine Surfactant Capping Layers. Langmuir, 2019, 35, 15825-15833.                      | 3.5  | 16        |
| 88 | The effect of complexing agents in chemical solution deposition of metal chalcogenide thin films.<br>Materials Chemistry Frontiers, 2021, 5, 2035-2050.                                               | 5.9  | 16        |
| 89 | Tunability of the optical band edge in thin PbS films chemically deposited on GaAs(100). Journal of<br>Physics Condensed Matter, 2010, 22, 262002.                                                    | 1.8  | 15        |
|    |                                                                                                                                                                                                       |      |           |

90 The role of interparticle and external forces in nanoparticle assembly. , 2009, , 38-49.

14

| #   | Article                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Enhanced photoluminescence from GaN grown by lateral confined epitaxy. Journal of Applied Physics, 2002, 91, 1191-1197.                                        | 2.5 | 13        |
| 92  | Chemical deposition and characterization of thorium-alloyed lead sulfide thin films. Thin Solid Films, 2014, 556, 223-229.                                     | 1.8 | 13        |
| 93  | Chemical epitaxy of CdSe on GaAs. CrystEngComm, 2017, 19, 5381-5389.                                                                                           | 2.6 | 13        |
| 94  | Surface energies and nanocrystal stability in the orthorhombic and π-phases of tin and germanium monochalcogenides. CrystEngComm, 2018, 20, 4237-4248.         | 2.6 | 13        |
| 95  | Layer-by-layer growth in solution deposition of monocrystalline lead sulfide thin films on GaAs(111).<br>Materials Chemistry Frontiers, 2019, 3, 1538-1544.    | 5.9 | 13        |
| 96  | Photoluminescence of polydiacetylene membranes on porous silicon utilized for chemical sensors.<br>Optical Materials, 2008, 30, 1766-1774.                     | 3.6 | 12        |
| 97  | Effect of hot acid etching on the mechanical strength of ground YAG laser elements. Journal of<br>Physics and Chemistry of Solids, 2008, 69, 839-846.          | 4.0 | 12        |
| 98  | Thermal healing of the sub-surface damage layer in sapphire. Materials Chemistry and Physics, 2010, 124, 323-329.                                              | 4.0 | 12        |
| 99  | Citrate-controlled chemical solution deposition of PbSe thin films. CrystEngComm, 2019, 21, 1818-1825.                                                         | 2.6 | 12        |
| 100 | Stability of cubic tin sulphide nanocrystals: role of ammonium chloride surfactant headgroups.<br>Nanoscale, 2019, 11, 17104-17110.                            | 5.6 | 12        |
| 101 | â€~Beneficial impurities' in colloidal synthesis of surfactant coated inorganic nanoparticles.<br>Nanotechnology, 2021, 32, 102001.                            | 2.6 | 12        |
| 102 | Skeletal architecture and microstructure of the calcifying coral Fungia simplex. Materials Science and Engineering C, 2003, 23, 473-477.                       | 7.3 | 11        |
| 103 | Optical properties of size quantized PbSe films chemically deposited on GaAs. EPJ Applied Physics, 2008, 41, 75-80.                                            | 0.7 | 11        |
| 104 | Two-Photon Polymerization of Polydiacetylene. Journal of Physical Chemistry B, 2009, 113, 1273-1276.                                                           | 2.6 | 11        |
| 105 | Hetero-Twinning in Chemical Epitaxy of PbS Thin Films on GaAs Substrates. Crystal Growth and Design, 2012, 12, 4006-4011.                                      | 3.0 | 11        |
| 106 | Microstructure related transport phenomena in chemically deposited PbSe films. Materials Chemistry and Physics, 2008, 112, 132-135.                            | 4.0 | 10        |
| 107 | Chemical epitaxy of CdS on GaAs. Journal of Materials Chemistry C, 2017, 5, 1660-1667.                                                                         | 5.5 | 10        |
| 108 | Mapping Charge Distribution in Single PbS Core – CdS Arm Nano-Multipod Heterostructures by<br>Off-Axis Electron Holography. Nano Letters, 2017, 17, 2778-2787. | 9.1 | 10        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | High photoconductive gain in a GaAs/PbS heterojunction based SWIR detector. Applied Physics Letters, 2020, 117, .                                                                                                      | 3.3 | 10        |
| 110 | Cathodoluminescence study of micro-crack-induced stress relief for AlN films on Si(111). Journal of Electronic Materials, 2006, 35, L15-L19.                                                                           | 2.2 | 9         |
| 111 | Phase transformation of PbSe/CdSe nanocrystals from core-shell to Janus structure studied by photoemission spectroscopy. Physical Review B, 2013, 87, .                                                                | 3.2 | 9         |
| 112 | Beneficial Impurities and Phase Control in Colloidal Synthesis of Tin Monoselenide. Langmuir, 2019, 35,<br>15855-15863.                                                                                                | 3.5 | 9         |
| 113 | Morphology control of perovskite films: a two-step, all solution process for conversion of lead selenide into methylammonium lead iodide. Materials Chemistry Frontiers, 2021, 5, 1410-1417.                           | 5.9 | 9         |
| 114 | Electrodeposited Quantum Dots. 6. Epitaxial Size Control in Cd(Se, Te) Nanocrystals on {111} Gold.<br>Israel Journal of Chemistry, 1997, 37, 303-313.                                                                  | 2.3 | 8         |
| 115 | Two―and threeâ€dimensional composite photonic crystals of macroporous silicon and lead sulfide<br>semiconductor nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2009,<br>206, 1290-1294. | 1.8 | 8         |
| 116 | Nanometer size effects in nucleation, growth and characterization of templated CdS nanocrystal assemblies. Nanoscale, 2012, 4, 7655.                                                                                   | 5.6 | 8         |
| 117 | The effect of short chain thiol ligand additives on chemical bath deposition of lead sulphide thin films: the unique behaviour of 1,2-ethanedithiol. CrystEngComm, 2016, 18, 9122-9129.                                | 2.6 | 8         |
| 118 | Infrared photoconductivity and photovoltaic response from nanoscale domains of PbS alloyed with thorium and oxygen. Nanotechnology, 2018, 29, 115202.                                                                  | 2.6 | 8         |
| 119 | Effect of light regimes on the microstructure of the reef-building coral Fungia simplex. Materials<br>Science and Engineering C, 2005, 25, 81-85.                                                                      | 7.3 | 7         |
| 120 | Twinning and Phase Control in Template-Directed ZnS and (Cd,Zn)S Nanocrystals. Crystal Growth and Design, 2013, 13, 2149-2160.                                                                                         | 3.0 | 7         |
| 121 | Chemical, structural and photovoltaic properties of graded CdS <sub>x</sub> Se <sub>1â^'x</sub> thin films grown by chemical bath deposition on GaAs(100). CrystEngComm, 2018, 20, 5735-5743.                          | 2.6 | 7         |
| 122 | Chemical epitaxy and interfacial reactivity in solution deposited PbS on ZnTe. Journal of Materials<br>Chemistry C, 2016, 4, 1996-2002.                                                                                | 5.5 | 6         |
| 123 | Electrical and optical characterization of extended SWIR detectors based on thin films of nano-columnar PbSe. Infrared Physics and Technology, 2019, 96, 89-97.                                                        | 2.9 | 6         |
| 124 | In situ X-ray Diffraction Studies of a Multilayered Membrane Fluid under Confinement and Shear.<br>International Journal of Thermophysics, 2001, 22, 1175-1184.                                                        | 2.1 | 5         |
| 125 | Interfacial characterization of chemical solutionâ€deposited thin films of PbSe on GaAs(100). Surface and Interface Analysis, 2008, 40, 939-943.                                                                       | 1.8 | 5         |
| 126 | Compositional tunability in solid solution PbS <sub>x</sub> Se <sub>1â^'x</sub> thin films chemically<br>deposited on GaAs(100). CrystEngComm, 2015, 17, 3433-3439.                                                    | 2.6 | 5         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A New Solid Solution Approach for the Study of Self-Irradiating Damage in non-Radioactive Materials.<br>Scientific Reports, 2017, 7, 2780.                                         | 3.3 | 5         |
| 128 | Postgrowth Control of the Interfacial Oxide Thickness in Semiconductor–Insulator–Semiconductor<br>Heterojunctions. Advanced Materials Interfaces, 2018, 5, 1800231.                | 3.7 | 5         |
| 129 | Liquid flow deposition of PbS films on GaAs(100). CrystEngComm, 2018, 20, 3765-3771.                                                                                               | 2.6 | 5         |
| 130 | Chemical epitaxy of a new orthorhombic phase of Cu2â^'xS on GaAs. CrystEngComm, 2019, 21, 6063-6071.                                                                               | 2.6 | 5         |
| 131 | A new binary phase in the tin monoselenide system: chemical epitaxy of orthorhombic γ-SnSe thin films.<br>Materials Chemistry Frontiers, 2021, 5, 5004-5011.                       | 5.9 | 5         |
| 132 | Formation of Ge Nanocrystals in Al <sub>2</sub> O <sub>3</sub> Matrix. Journal of Nanoscience and Nanotechnology, 2008, 8, 759-763.                                                | 0.9 | 4         |
| 133 | Luminescence and structure of nanosized inclusions formed in SiO2 layers under double implantation of silicon and carbon ions. Journal of Surface Investigation, 2009, 3, 702-708. | 0.5 | 4         |
| 134 | Directed Coassembly of Oriented PbS Nanoparticles and Monocrystalline Sheets of Alkylamine<br>Surfactant. Langmuir, 2012, 28, 15119-15123.                                         | 3.5 | 4         |
| 135 | Time, illumination and solvent dependent stability of cadmium sulfide nanoparticle suspensions.<br>Journal of Colloid and Interface Science, 2014, 430, 283-292.                   | 9.4 | 4         |
| 136 | A Two-Step, All Solution Process for Conversion of Lead Sulfide to Methylammonium Lead Iodide<br>Perovskite Thin Films. Thin Solid Films, 2020, 714, 138367.                       | 1.8 | 4         |
| 137 | The role of CdS doping in improving SWIR photovoltaic and photoconductive responses in solution grown CdS/PbS heterojunctions. Nanotechnology, 2020, 31, 255502.                   | 2.6 | 4         |
| 138 | Sample preparation induced phase transitions in solution deposited copper selenide thin films. RSC Advances, 2021, 12, 277-284.                                                    | 3.6 | 4         |
| 139 | Substrate Surface Treatments and "Controlled Contamination―in GaN / Sapphire MOCVD. Materials<br>Research Society Symposia Proceedings, 1997, 482, 157.                            | 0.1 | 3         |
| 140 | Microstructure of GaN deposited by lateral confined epitaxy on patterned Si (111). Journal of Electronic Materials, 2002, 31, 88-93.                                               | 2.2 | 3         |
| 141 | High-quality GaN on intentionally roughened c-sapphire. EPJ Applied Physics, 2003, 22, 11-14.                                                                                      | 0.7 | 3         |
| 142 | Thermochemical strengthening of Nd:YAG laser rods. , 2006, , .                                                                                                                     |     | 3         |
| 143 | Structural and Optical Properties of Al2O3 with Si and Ge Nanocrystals. Materials Research Society Symposia Proceedings, 2006, 958, 1.                                             | 0.1 | 3         |
| 144 | Silicon Photonic Crystals Doped with Colloidally Synthesized Lead Salt Semiconductors<br>Nanocrystals. Journal of Nanoscience and Nanotechnology, 2009, 9, 3648-3651.              | 0.9 | 3         |

| #   | Article                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Studying of quantum-size effects origination in semiconducting lead sulfide nanocrystals. Protection of Metals and Physical Chemistry of Surfaces, 2010, 46, 633-638.                       | 1.1  | 3         |
| 146 | Complex investigation of electronic structure transformations in Lead Sulphide nanoparticles using a set of electron spectroscopy techniques. Vacuum, 2012, 86, 638-642.                    | 3.5  | 3         |
| 147 | Architecture, development and implementation of a SWIR to visible integrated up-conversion imaging device. Proceedings of SPIE, 2016, , .                                                   | 0.8  | 3         |
| 148 | Combinatorial Liquid Flow Deposition of PbS Semiconductor Thin Films. Industrial & Engineering<br>Chemistry Research, 2021, 60, 15593-15599.                                                | 3.7  | 2         |
| 149 | Optoelectronic Characterization of Epitaxial Films of Electrodeposited CdSe Quantum Dots. , 1996, , 579-590.                                                                                |      | 1         |
| 150 | Microstructure of GaN grown by lateral confined epitaxy 2. GaN on patterned sapphire. Journal of Electronic Materials, 2003, 32, 23-28.                                                     | 2.2  | 1         |
| 151 | A qualitative description of preferred orientation in porous carbonate matrices of marine origin.<br>Materials Science and Engineering C, 2003, 23, 593-595.                                | 7.3  | 1         |
| 152 | Reduction of oxygen contamination in AlN. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2541-2544.                                                               | 0.8  | 1         |
| 153 | Composite photonic crystal cavities of macro porous silicon and lead sulfide thin films. Physica<br>Status Solidi (A) Applications and Materials Science, 2011, 208, 1394-1398.             | 1.8  | 1         |
| 154 | Morphology control in chemical solution deposited lead selenide thin films on fluorine-doped tin oxide. Thin Solid Films, 2020, 710, 138256.                                                | 1.8  | 1         |
| 155 | NMR and EPR study of cubic ï€-phase SnS semiconductor nanoparticles. Materials Chemistry and Physics, 2020, 250, 123206.                                                                    | 4.0  | 1         |
| 156 | On the "Chemical Inertness―of Teflon in Chemical Synthesis. Industrial & Engineering Chemistry<br>Research, 2021, 60, 11995-12000.                                                          | 3.7  | 1         |
| 157 | The Role of Semiconductor/Substrate Mismatch in the Formation of Electrodeposited Quantum Dots. ,<br>1996, , 167-174.                                                                       |      | 1         |
| 158 | Electroless Deposited Nickel Thin Films Alloyed with Thorium. Crystal Research and Technology, 0, , 2100194.                                                                                | 1.3  | 1         |
| 159 | Electron spectroscopy investigations of semiconductor nanocrystals formed by various technologies. International Journal of Nanoparticles, 2008, 1, 14.                                     | 0.3  | 0         |
| 160 | Monochalcogenide Semiconductors: Ï€â€Phase Tin and Germanium Monochalcogenide Semiconductors:<br>An Emerging Materials System (Adv. Mater. 41/2018). Advanced Materials, 2018, 30, 1870310. | 21.0 | 0         |
| 161 | The effect of deposition mechanism on the properties of epitaxial PbS films grown from acidic bath.<br>Materials Chemistry Frontiers, 2021, 5, 2860-2866.                                   | 5.9  | 0         |
| 162 | Amidation-Controlled Polymorphism in SnS Nanoparticles. Crystal Growth and Design, 0, , .                                                                                                   | 3.0  | 0         |