
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical simulation of nonlinear phenomena in a standing-wave thermoacoustic engine with gas-liquid coupling oscillation. Applied Thermal Engineering, 2022, 207, 118131.	3.0	17
2	Numerical investigation of airborne transmission of respiratory infections on the subway platform. Geoscience Frontiers, 2022, 13, 101384.	4.3	5
3	Experimental study on the pool boiling heat transfer of slush nitrogen under triple point to atmospheric pressure. IOP Conference Series: Materials Science and Engineering, 2022, 1240, 012153.	0.3	0
4	Multi-route transmission potential of SARS-CoV-2 in healthcare facilities. Journal of Hazardous Materials, 2021, 402, 123771.	6.5	72
5	Prediction of heat exchanger performance in cryogenic oscillating flow conditions by support vector machine. Applied Thermal Engineering, 2021, 182, 116053.	3.0	27
6	Evaluation and prediction of the safe distance in liquid hydrogen spill accident. Chemical Engineering Research and Design, 2021, 146, 1-8.	2.7	29
7	Spread characteristics of hydrogen vapor cloud for liquid hydrogen spill under different source conditions. International Journal of Hydrogen Energy, 2021, 46, 4606-4613.	3.8	5
8	An optimization on the stacking line of low-pressure axial-flow fan using the surrogate-assistant optimization method. Journal of Mechanical Science and Technology, 2021, 35, 4997-5005.	0.7	3
9	Performance comparison of looped thermoacoustic electric generators with various thermoacoustic stages. International Journal of Energy Research, 2020, 44, 1103-1112.	2.2	3
10	Performance of an airâ€cooled looped thermoacoustic engine capable of recovering lowâ€grade thermal energy. International Journal of Energy Research, 2020, 44, 2682-2692.	2.2	9
11	Numerical and experimental study of a two-phase thermofluidic oscillator with regenerator achieving low temperature-differential oscillation. Applied Thermal Engineering, 2020, 180, 115790.	3.0	8
12	A closed two-phase thermofluidic oscillator with zeotropic mixtures for low-grade heat recovery. Energy, 2020, 211, 118691.	4.5	3
13	Experimental Study on Pool Boiling Heat Transfer Characteristics of Slush Nitrogen. IOP Conference Series: Materials Science and Engineering, 2020, 755, 012026.	0.3	1
14	An experimental investigation on parallel-plate finned heat exchanger working with cryogenic oscillating helium flow. IOP Conference Series: Materials Science and Engineering, 2020, 755, 012050.	0.3	1
15	Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation: A steady-state numerical investigation. Aerosol Science and Technology, 2020, 54, 869-879.	1.5	23
16	Electrical-analogy network model of a modified two-phase thermofluidic oscillator with regenerator for low-grade heat recovery. Applied Energy, 2020, 262, 114539.	5.1	16
17	Dilution of flammable vapor cloud formed by liquid hydrogen spill. International Journal of Hydrogen Energy, 2020, 45, 5067-5072.	3.8	5
18	Numerical investigation on the dispersion of hydrogen vapor cloud with atmospheric inversion layer. International Journal of Hydrogen Energy, 2019, 44, 23513-23521.	3.8	12

#	Article	IF	CITATIONS
19	Onset and damping characteristics of a closed two-phase thermoacoustic engine. Applied Thermal Engineering, 2019, 160, 114086.	3.0	25
20	Numerical and experimental study of a looped travellingâ€wave thermoacoustic electric generator for lowâ€grade heat recovery. International Journal of Energy Research, 2019, 43, 5735-5746.	2.2	7
21	Spread of hydrogen vapor cloud during continuous liquid hydrogen spills. Cryogenics, 2019, 103, 102975.	0.9	10
22	Numerical investigation on the effects of dike around liquid hydrogen source on vapor cloud dispersion. International Journal of Hydrogen Energy, 2019, 44, 5063-5071.	3.8	12
23	A novel partial lid for mechanical defeatherers reduced aerosol dispersion during processing of avian influenza virus infected poultry. PLoS ONE, 2019, 14, e0216478.	1.1	3
24	Numerical investigation on turbulent oscillatory flow through a jet pump. Journal of the Acoustical Society of America, 2019, 145, 1417-1425.	0.5	1
25	Performance of a looped thermoacoustic engine with multiple loads capable of utilizing heat source below 200â€^°C. Applied Thermal Engineering, 2019, 148, 516-523.	3.0	16
26	Modeling the development of hydrogen vapor cloud considering the presence of air humidity. International Journal of Hydrogen Energy, 2019, 44, 2059-2068.	3.8	21
27	Flow field and friction factor of slush nitrogen in a horizontal circular pipe. Cryogenics, 2018, 91, 87-95.	0.9	7
28	Dilution of hazardous vapor cloud in liquid hydrogen spill process under different source conditions. International Journal of Hydrogen Energy, 2018, 43, 7643-7651.	3.8	20
29	Development of a three-stage looped thermoacoustic electric generator capable of utilizing heat source below 120â€ [−] °C. Energy Conversion and Management, 2018, 155, 161-168.	4.4	24
30	Performance comparison of jet pumps with round and sharp edge of small opening in oscillatory flow. Applied Thermal Engineering, 2018, 139, 562-568.	3.0	7
31	Performance optimization of the regenerator of a looped thermoacoustic engine powered by low-grade heat. International Journal of Energy Research, 2018, 42, 4470-4480.	2.2	5
32	Experimental investigation on pressure drop and friction factor of slush nitrogen turbulent flow in helically corrugated pipes. Cryogenics, 2018, 94, 56-61.	0.9	9
33	Heat transfer performance of slush nitrogen in a horizontal circular pipe. Thermal Science and Engineering Progress, 2018, 8, 66-77.	1.3	7
34	Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine. Applied Thermal Engineering, 2017, 115, 1089-1100.	3.0	18
35	Experimental study on the performance of capacitance-type meters for slush nitrogen measurement. Experimental Thermal and Fluid Science, 2017, 88, 103-110.	1.5	14
36	CFD modeling and analysis of the influence factors of liquid hydrogen spills in open environment. International Journal of Hydrogen Energy, 2017, 42, 732-739.	3.8	41

#	Article	IF	CITATIONS
37	Time-averaged pressure drop induced by a jet pump in oscillatory flow. Journal of the Acoustical Society of America, 2017, 142, 1730-1738.	0.5	2
38	Modeling and analysis of the flammable vapor cloud formed by liquid hydrogen spills. International Journal of Hydrogen Energy, 2017, 42, 26762-26770.	3.8	18
39	Low temperature difference thermoacoustic prime mover with asymmetric multi-stage loop configuration. Scientific Reports, 2017, 7, 7665.	1.6	30
40	Numerical prediction of flow characteristics of slush hydrogen in a horizontal pipe. International Journal of Hydrogen Energy, 2017, 42, 3778-3789.	3.8	21
41	Impact of Gedeon streaming on the efficiency of a double-inlet pulse tube refrigerator. Applied Thermal Engineering, 2017, 111, 445-454.	3.0	9
42	Impact of cross-sectional area ratio on time-averaged pressure drop induced by jet pump for thermoacoustic engine. Energy Procedia, 2017, 142, 337-342.	1.8	2
43	Numerical study on the flow and heat transfer characteristics of slush nitrogen in a corrugated pipe. IOP Conference Series: Materials Science and Engineering, 2017, 278, 012131.	0.3	1
44	A Comprehensive Empirical Correlation for Finned Heat Exchangers with Parallel Plates Working in Oscillating Flow. Applied Sciences (Switzerland), 2017, 7, 117.	1.3	8
45	Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube. Applied Energy, 2016, 183, 290-298.	5.1	41
46	Hydrogenation reaction characteristics and properties of its hydrides for magnetic regenerative material HoCu2. Journal of Central South University, 2016, 23, 1564-1568.	1.2	1
47	Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator. Energy Conversion and Management, 2016, 123, 243-251.	4.4	34
48	Thermodynamic characteristics during the onset and damping processes in a looped thermoacoustic prime mover. Applied Thermal Engineering, 2016, 100, 1169-1172.	3.0	14
49	Visualization study of nucleate pool boiling of liquid nitrogen with quasi-steady heat input. Cryogenics, 2015, 72, 14-21.	0.9	16
50	Performance comparison of jet pumps with rectangular and circular tapered channels for a loop-structured traveling-wave thermoacoustic engine. Applied Energy, 2015, 148, 305-313.	5.1	20
51	An experiment-based comparative investigation of correlations for microtube gas flow. Sadhana - Academy Proceedings in Engineering Sciences, 2015, 40, 537-547.	0.8	0
52	Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components. Energy, 2015, 93, 828-853.	4.5	101
53	Heat transfer of laminar oscillating flow in finned heat exchanger of pulse tube refrigerator. International Journal of Heat and Mass Transfer, 2014, 70, 811-818.	2.5	32
54	Measurement of thermal expansion at low temperatures using the strain gage method. Journal of Zhejiang University: Science A, 2014, 15, 323-330.	1.3	11

#	Article	IF	CITATIONS
55	Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger. Journal of Zhejiang University: Science A, 2013, 14, 427-434.	1.3	13
56	Hydrogen absorption characteristics and structural transformation during the hydrogenation process of Er3Ni. Intermetallics, 2013, 32, 162-166.	1.8	1
57	Performance analysis of a micro-scale pulse tube cryocooler based on optical fiber regenerator. Cryogenics, 2013, 55-56, 30-34.	0.9	1
58	Influence of working liquid on the onset characteristics of a thermoacoustic engine with gas and liquid. Journal of Applied Physics, 2012, 112, .	1.1	11
59	Basic analysis on a thermoacoustic engine with gas and liquid. Journal of Applied Physics, 2011, 109, .	1.1	9
60	Observation and analysis of the detachment frequency of coalesced bubbles in pool boiling liquid nitrogen. Cryogenics, 2011, 51, 516-520.	0.9	9
61	Lumped parameter model for resonant frequency estimation of a thermoacoustic engine with gas-liquid coupling oscillation. Journal of Zhejiang University: Science A, 2011, 12, 232-237.	1.3	6
62	Hydrodynamic and thermal development of compressible oscillatory flow inside circular channel. Cryogenics, 2011, 51, 139-145.	0.9	2
63	Hydrogenation-induced variation in crystal structure and heat capacity of magnetic regenerative material Er3Ni. Cryogenics, 2011, 51, 214-217.	0.9	7
64	A standing-wave thermoacoustic engine with gas-liquid coupling oscillation. Applied Physics Letters, 2009, 94, .	1.5	31
65	Influence of acoustic pressure amplifier dimensions on the performance of a standing-wave thermoacoustic system. Applied Thermal Engineering, 2009, 29, 950-956.	3.0	17
66	Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method. Journal of Zhejiang University: Science A, 2009, 10, 691-696.	1.3	61
67	Bubble counter based on photoelectric technique for leakage detection of cryogenic valves. Journal of Zhejiang University: Science A, 2008, 9, 88-92.	1.3	5
68	Impact of load impedance on the performance of a thermoacoustic system employing acoustic pressure amplifier. Journal of Zhejiang University: Science A, 2008, 9, 79-87.	1.3	2
69	Characteristics study on the oscillation onset and damping of a traveling-wave thermoacoustic prime mover. Journal of Zhejiang University: Science A, 2008, 9, 944-949.	1.3	9
70	Thermoacoustically driven pulse tube cooler below 60K. Cryogenics, 2007, 47, 526-529.	0.9	20
71	Experimental observation on a small-scale thermoacoustic prime mover. Journal of Zhejiang University: Science A, 2007, 8, 205-209.	1.3	17
72	Influence of input acoustic power on regenerator's performance. Journal of Zhejiang University: Science A, 2007, 8, 1452-1456.	1.3	3

#	Article	IF	CITATIONS
73	Performance comparison of thermoacoustic engines with constant-diameter resonant tube and tapered resonant tube. Cryogenics, 2006, 46, 699-704.	0.9	23
74	Preliminary Study on Circuit Simulation of Thermo Acoustic Engines. AIP Conference Proceedings, 2006, , .	0.3	2
75	Thermoacoustically driven pulse tube refrigeration below 80K by introducing an acoustic pressure amplifier. Applied Physics Letters, 2006, 89, 211915.	1.5	11
76	Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator. Cryogenics, 2005, 45, 185-191.	0.9	43
77	Influence of buffer on resonance frequency of thermoacoustic engine. Cryogenics, 2002, 42, 223-227.	0.9	17
78	Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover. Cryogenics, 1999, 39, 843-846.	0.9	40