
Hua Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835886/publications.pdf Version: 2024-02-01

HUA CE

#	Article	IF	CITATIONS
1	Hygrothermal performance of cross-laminated timber wall assemblies with built-in moisture: field measurements and simulations. Building and Environment, 2014, 71, 95-110.	3.0	77
2	Impact of balcony thermal bridges on the overall thermal performance of multi-unit residential buildings: A case study. Energy and Buildings, 2013, 60, 163-173.	3.1	74
3	Dynamic effect of thermal bridges on the energy performance of a low-rise residential building. Energy and Buildings, 2015, 105, 106-118.	3.1	58
4	Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region. Energy Policy, 2021, 159, 112661.	4.2	49
5	Influence of moisture load profiles on moisture buffering potential and moisture residuals of three groups of hygroscopic materials. Building and Environment, 2014, 81, 162-171.	3.0	38
6	Effects of roof overhangs on wind-driven rain wetting of a low-rise cubic building: A numerical study. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 125, 38-51.	1.7	36
7	Impact of future climates on the durability of typical residential wall assemblies retrofitted to the PassiveHaus for the Eastern Canada region. Building and Environment, 2016, 97, 111-125.	3.0	36
8	Effect of dynamic modeling of thermal bridges on the energy performance of residential buildings with high thermal mass for cold climates. Sustainable Cities and Society, 2017, 34, 250-263.	5.1	33
9	Calibration of building model based on indoor temperature for overheating assessment using genetic algorithm: Methodology, evaluation criteria, and case study. Building and Environment, 2022, 207, 108518.	3.0	23
10	Do high energy-efficient buildings increase overheating risk in cold climates? Causes and mitigation measures required under recent and future climates. Building and Environment, 2022, 219, 109230.	3.0	23
11	Field measurements of wind-driven rain on mid-and high-rise buildings in three Canadian regions. Building and Environment, 2017, 116, 228-245.	3.0	22
12	Dynamic effect of balcony thermal bridges on the energy performance of a high-rise residential building in Canada. Energy and Buildings, 2016, 116, 78-88.	3.1	21
13	Effect of turbulence modeling schemes on wind-driven rain deposition on a mid-rise building: CFD modeling and validation. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184, 362-377.	1.7	20
14	Experimental study of thermal and airtightness performance of structural insulated panel joints in cold climates. Building and Environment, 2017, 115, 345-357.	3.0	19
15	Energy positive curtain wall configurations for a cold climate using the Analysis of Variance (ANOVA) approach. Building Simulation, 2016, 9, 297-310.	3.0	17
16	Optimization of passive solar design and integration of building integrated photovoltaic/thermal (BIPV/T) system in northern housing. Building Simulation, 2021, 14, 1467-1486.	3.0	17
17	Effect of overhang on wind-driven rain wetting of facades on a mid-rise building: Field measurements. Building and Environment, 2017, 118, 234-250.	3.0	16
18	Improved assessment of wind-driven rain on building façade based on ISO standard with high-resolution on-site weather data. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176, 183-196.	1.7	15

Hua Ge

#	Article	IF	CITATIONS
19	Experimental and numerical investigations of the effects of air leakage on temperature and moisture fields in porous insulation. Building and Environment, 2015, 94, 457-466.	3.0	14
20	Effect of air leakage on the hygrothermal performance of highly insulated wood frame walls: Comparison of air leakage modelling methods. Building and Environment, 2017, 123, 363-377.	3.0	13
21	Field study of hygrothermal performance of highly insulated wood-frame walls under simulated air leakage. Building and Environment, 2019, 160, 106202.	3.0	13
22	Impact of Curtain Wall Configurations on Building Energy Performance in the Perimeter Zone for a Cold Climate. Energy Procedia, 2015, 78, 352-357.	1.8	12
23	Influence of time resolution and averaging techniques of meteorological data on the estimation of wind-driven rain load on building facades for Canadian climates. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 143, 50-61.	1.7	10
24	Wind-driven rain on buildings: Accuracy of the ISO semi-empirical model. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212, 104606.	1.7	10
25	Wind-driven rain (WDR) loading on building facades: A state-of-the-art review. Building and Environment, 2022, 221, 109314.	3.0	10
26	Timber framing factors in Toronto residential house construction. Architectural Science Review, 2014, 57, 159-168.	1.1	9
27	Moisture-safe attic design in extremely cold climate: Hygrothermal simulations. Building and Environment, 2020, 182, 107166.	3.0	9
28	Test Method to Measure the Relative Capacity of Wall Panels to Evacuate Moisture from Their Stud Cavity. Journal of Architectural Engineering, 2007, 13, 194-204.	0.8	8
29	Field measurements of hygrothermal performance of attics in extreme cold climates. Building and Environment, 2018, 134, 114-130.	3.0	7
30	Evaluating the potential of freeze-thaw damage in internally insulated masonry under climate change using different models. MATEC Web of Conferences, 2019, 282, 02081.	0.1	6
31	Future projected changes in moisture index over Canada. Building and Environment, 2021, 199, 107923.	3.0	6
32	Reliability of Existing Climate Indices in Assessing the Freeze-Thaw Damage Risk of Internally Insulated Masonry Walls. Buildings, 2021, 11, 482.	1.4	6
33	Evaluation of Parameters Influencing the Moisture Buffering Potential of Hygroscopic Materials with BSim Simulations. Buildings, 2014, 4, 375-393.	1.4	5
34	Thermal resistance of multi-functional panels in cold-climate regions. Journal of Building Engineering, 2021, 33, 101838.	1.6	5
35	Reliability of Moisture Reference Year (MRY) selection methods for hygrothermal performance analysis of wood-frame walls under historical and future climates. Building and Environment, 2022, 207, 108513.	3.0	5
36	Integration of Building Integrated Photovoltaic/Thermal (BIPV/T) System with Heat Recovery Ventilators for Improved Performance Under Extreme Cold Climates. Springer Proceedings in Energy, 2019, , 97-110.	0.2	2

Hua Ge

#	Article	IF	CITATIONS
37	Effect of vapor diffusion port on the hygrothermal performance of wood-frame walls. Journal of Building Engineering, 2021, 39, 102280.	1.6	2
38	Sensitivity Analysis of Hygrothermal Performance of Cross-Laminated Timber Wall Assemblies. , 2017, , 132-151.		0