Sun Hwa Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835759/publications.pdf

Version: 2024-02-01

117571 168321 5,576 51 34 53 h-index citations g-index papers 55 55 55 9416 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, 2010, 20, 1907.	6.7	553
2	Graphene Oxide Liquid Crystals. Angewandte Chemie - International Edition, 2011, 50, 3043-3047.	7.2	534
3	Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition. Journal of Physical Chemistry Letters, 2010, 1, 1259-1263.	2.1	436
4	Threeâ€Dimensional Selfâ€Assembly of Graphene Oxide Platelets into Mechanically Flexible Macroporous Carbon Films. Angewandte Chemie - International Edition, 2010, 49, 10084-10088.	7.2	404
5	Polymer Brushes via Controlled, Surfaceâ€Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. Macromolecular Rapid Communications, 2010, 31, 281-288.	2.0	350
6	Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes. ACS Nano, 2012, 6, 159-167.	7.3	297
7	Selective Electron―or Holeâ€Transport Enhancement in Bulkâ€Heterojunction Organic Solar Cells with N― or Bâ€Doped Carbon Nanotubes. Advanced Materials, 2011, 23, 629-633.	11.1	248
8	Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenedioxythiophene) for Supercapacitors. ACS Nano, 2014, 8, 1500-1510.	7.3	217
9	Mussel Inspired Highly Aligned Ti ₃ C ₂ T _{<i>x</i>} MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS Nano, 2020, 14, 11722-11732.	7.3	212
10	Tailored Assembly of Carbon Nanotubes and Graphene. Advanced Functional Materials, 2011, 21, 1338-1354.	7.8	207
11	Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon, 2011, 49, 2615-2623.	5.4	204
12	Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science, 2018, 362, 1021-1025.	6.0	158
13	Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nature Nanotechnology, 2020, 15, 289-295.	15.6	141
14	Controlled Folding of Single Crystal Graphene. Nano Letters, 2017, 17, 1467-1473.	4.5	92
15	Necklaceâ€like Nitrogenâ€Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage. Advanced Functional Materials, 2020, 30, 1909725.	7.8	89
16	A ZnO/N-doped carbon nanotube nanocomposite charge transport layer for high performance optoelectronics. Journal of Materials Chemistry, 2012, 22, 12695.	6.7	86
17	Lithium Accommodation in a Redoxâ€Active Covalent Triazine Framework for High Areal Capacity and Fastâ€Charging Lithiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2003761.	7.8	86
18	Hierarchically Ordered Polymer Films by Templated Organization of Aqueous Droplets. Advanced Functional Materials, 2007, 17, 2315-2320.	7.8	72

#	Article	IF	CITATIONS
19	Highly entangled carbon nanotube scaffolds by self-organized aqueous droplets. Soft Matter, 2009, 5, 2343-2346.	1.2	70
20	Simple Preparation of Highâ€Quality Graphene Flakes without Oxidation Using Potassium Salts. Small, 2011, 7, 864-868.	5.2	69
21	Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns. ACS Nano, 2016, 10, 1404-1410.	7.3	69
22	Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017, 29, 4546-4556.	3.2	63
23	Liquidâ€Metalâ€Templated Synthesis of 2D Graphitic Materials at Room Temperature. Advanced Materials, 2020, 32, e2001997.	11.1	63
24	DNA Origami Nanopatterning on Chemically Modified Graphene. Angewandte Chemie - International Edition, 2012, 51, 912-915.	7.2	59
25	Li-Anode Protective Layers for Li Rechargeable Batteries via Layer-by-Layer Approaches. Chemistry of Materials, 2014, 26, 2579-2585.	3.2	56
26	Controlling the Thickness of Thermally Expanded Films of Graphene Oxide. ACS Nano, 2017, 11, 665-674.	7.3	55
27	Porous Two-Dimensional Monolayer Metal–Organic Framework Material and Its Use for the Size-Selective Separation of Nanoparticles. ACS Applied Materials & Size-Selective Separation of Nanoparticles. ACS Applied Materials & Size-Selective Separation of Nanoparticles. ACS Applied Materials & Size-Selective Separation of Nanoparticles.	4.0	51
28	Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) Tetraaza[14]annulene-Linked Metal Organic Framework. Journal of the American Chemical Society, 2019, 141, 16884-16893.	6.6	51
29	Synthesis of a Copper 1,3,5-Triamino-2,4,6-benzenetriol Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 18346-18354.	6.6	51
30	Synthesis of Porous Covalent Quinazoline Networks (CQNs) and Their Gas Sorption Properties. Angewandte Chemie - International Edition, 2019, 58, 872-876.	7.2	46
31	Organic Radical-Linked Covalent Triazine Framework with Paramagnetic Behavior. ACS Nano, 2019, 13, 5251-5258.	7.3	43
32	Macroporous Polymer Thin Film Prepared from Temporarily Stabilized Water-in-Oil Emulsion. Journal of Physical Chemistry B, 2006, 110, 13959-13964.	1.2	35
33	Biomimetic mineralization of vertical N-doped carbon nanotubes. Chemical Communications, 2011, 47, 535-537.	2.2	31
34	Self-organized grafting of carbon nanotubes by end-functionalized polymers. Macromolecular Research, 2008, 16, 261-266.	1.0	30
35	Sodide and Organic Halides Effect Covalent Functionalization of Single-Layer and Bilayer Graphene. Journal of the American Chemical Society, 2017, 139, 4202-4210.	6.6	27
36	Electroless Bimetal Decoration on Nâ€Doped Carbon Nanotubes and Graphene for Oxygen Reduction Reaction Catalysts. Particle and Particle Systems Characterization, 2014, 31, 965-970.	1.2	21

#	Article	IF	Citations
37	Polymer/carbon nanotube nanocomposites via noncovalent grafting with endâ€functionalized polymers. Journal of Applied Polymer Science, 2008, 110, 2345-2351.	1.3	20
38	Water-repellent macroporous carbon nanotube/elastomer nanocomposites by self-organized aqueous droplets. Macromolecular Research, 2009, 17, 666-671.	1.0	18
39	Synthesis of Diamond-Like Carbon Nanofiber Films. ACS Nano, 2020, 14, 13663-13672.	7.3	14
40	Structural insights into hydrogenated graphite prepared from fluorinated graphite through Birchâ° type reduction. Carbon, 2017, 121, 309-321.	5.4	12
41	Stage-1 cationic C60 intercalated graphene oxide films. Carbon, 2021, 175, 131-140.	5.4	11
42	Synthesis of Porous Covalent Quinazoline Networks (CQNs) and Their Gas Sorption Properties. Angewandte Chemie, 2019, 131, 882-886.	1.6	9
43	Synthesis of Highly Oriented Graphite Films with a Low Wrinkle Density and Near-Millimeter-Scale Lateral Grains. Chemistry of Materials, 2020, 32, 3134-3143.	3.2	9
44	Electrochemical Formation of a Covalent–Ionic Stage-1 Graphite Intercalation Compound with Trifluoroacetic Acid. Chemistry of Materials, 2022, 34, 217-231.	3.2	6
45	Fabrication of Ordered Porous SWNT-Polymer Nanocomposites by Emulsion Templating. Macromolecular Symposia, 2007, 249-250, 618-622.	0.4	5
46	Alkylated sulfonated poly(arylene sulfone)s for proton exchange membranes. Macromolecular Research, 2017, 25, 400-407.	1.0	5
47	UV-crosslinked poly(arylene ether sulfone) – LAPONITE® nanocomposites for proton exchange membranes. RSC Advances, 2017, 7, 28358-28365.	1.7	5
48	Largeâ€Area Uniform 1â€nmâ€Level Amorphous Carbon Layers from 3D Conformal Polymer Brushes. A "Nextâ€Generation†Cu Diffusion Barrier?. Advanced Materials, 2022, 34, e2110454.	11.1	5
49	Controllable electrodeposition of ordered carbon nanowalls on Cu(111) substrates. Materials Today, 2022, 57, 75-83.	8.3	3
50	Tailored Assembly of Carbon Nanostructures: Tailored Assembly of Carbon Nanotubes and Graphene (Adv. Funct. Mater. 8/2011). Advanced Functional Materials, 2011, 21, 1329-1329.	7.8	2
51	Back Cover: DNA Origami Nanopatterning on Chemically Modified Graphene (Angew. Chem. Int. Ed.) Tj ETQq1 1	0. <u>78</u> 4314	rgBT /Overlo