Tobias P Dick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835679/publications.pdf

Version: 2024-02-01

67 papers

8,094 citations

94433 37 h-index 63 g-index

67 all docs

67 docs citations

67 times ranked 9176 citing authors

#	Article	IF	CITATIONS
1	Commonly Used Alkylating Agents Limit Persulfide Detection by Converting Protein Persulfides into Thioethers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
2	Thiol peroxidase-based redox relays. , 2022, , 307-320.		2
3	Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia, 2022, 70, 2045-2061.	4.9	16
4	Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nature Metabolism, 2022, 4, 651-662.	11.9	356
5	Oxidation inhibits autophagy protein deconjugation from phagosomes to sustain MHC class II restricted antigen presentation. Nature Communications, 2021, 12, 1508.	12.8	43
6	Comment on "Evidence that the ProPerDP method is inadequate for protein persulfidation detection due to lack of specificityâ€. Science Advances, 2021, 7, .	10.3	3
7	A comparison of Prx- and OxyR-based H2O2 probes expressed in S.Âcerevisiae. Journal of Biological Chemistry, 2021, 297, 100866.	3.4	16
8	The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. , 2021, 228, 107916.		154
9	Dynamics of thiol-based redox switches: redox at its peak!. Biological Chemistry, 2021, 402, 221-222.	2.5	1
10	3-Mercaptopyruvate sulfurtransferase: an enzyme at the crossroads of sulfane sulfur trafficking. Biological Chemistry, 2021, 402, 223-237.	2.5	50
11	A role for peroxiredoxins in H2O2- and MEKK-dependent activation of the p38 signaling pathway. Redox Biology, 2020, 28, 101340.	9.0	32
12	Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia, 2020, 34, 115-127.	7.2	23
13	Molecular basis for the distinct functions of redox-active and FeS-transfering glutaredoxins. Nature Communications, 2020, 11, 3445.	12.8	47
14	A role for annexin A2 in scaffolding the peroxiredoxin 2–STAT3 redox relay complex. Nature Communications, 2020, 11, 4512.	12.8	29
15	Real-time monitoring of peroxiredoxin oligomerization dynamics in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16313-16323.	7.1	36
16	A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes. ELife, 2020, 9, .	6.0	18
17	Glucose Acutely Reduces Cytosolic and Mitochondrial H ₂ O ₂ in Rat Pancreatic Beta Cells. Antioxidants and Redox Signaling, 2019, 30, 297-313.	5.4	21
18	N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. Cell Chemical Biology, 2018, 25, 447-459.e4.	5.2	270

#	Article	IF	Citations
19	A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nature Chemical Biology, 2018, 14, 148-155.	8.0	159
20	The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxidants and Redox Signaling, 2018, 28, 558-573.	5.4	145
21	Cysteine perthiosulfenic acid (Cys-SSOH): A novel intermediate in thiol-based redox signaling?. Redox Biology, 2018, 14, 379-385.	9.0	56
22	Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells. Redox Biology, 2018, 14, 549-556.	9.0	35
23	Monitoring yeast mitochondria with peroxiredoxin-based redox probes: the influence of oxygen and glucose availability. Interface Focus, 2017, 7, 20160143.	3.0	6
24	Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species. Free Radical Biology and Medicine, 2017, 106, 329-338.	2.9	42
25	Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell, 2017, 169, 807-823.e19.	28.9	339
26	Pex35 is a regulator of peroxisome abundance. Journal of Cell Science, 2017, 130, 791-804.	2.0	34
27	Utilizing Natural and Engineered Peroxiredoxins As Intracellular Peroxide Reporters. Molecules and Cells, 2016, 39, 46-52.	2.6	15
28	Mouse redox histology using genetically encoded probes. Science Signaling, 2016, 9, rs1.	3.6	62
29	Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nature Chemical Biology, 2016, 12, 437-443.	8.0	187
30	Redox sensitivity of the MyD88 immune signaling adapter. Free Radical Biology and Medicine, 2016, 101, 93-101.	2.9	15
31	A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Science Advances, 2016, 2, e1500968.	10.3	250
32	Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters. Scientific Reports, 2016, 6, 23251.	3.3	22
33	Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxidants and Redox Signaling, 2016, 24, 680-712.	5.4	247
34	Real-Time Assays for Monitoring the Influence of Sulfide and Sulfane Sulfur Species on Protein Thiol Redox States. Methods in Enzymology, 2015, 555, 57-77.	1.0	12
35	Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature, 2015, 520, 549-552.	27.8	498
36	A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nature Chemical Biology, 2015, 11, 156-163.	8.0	184

#	Article	IF	Citations
37	Incidence and physiological relevance of protein thiol switches. Biological Chemistry, 2015, 396, 389-399.	2.5	48
38	Highlight: Dynamics of Thiol-Based Redox Switches. Biological Chemistry, 2015, 396, 385-387.	2.5	7
39	Metabolic Remodeling in Times of Stress: Who Shoots Faster than His Shadow?. Molecular Cell, 2015, 59, 519-521.	9.7	44
40	Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nature Chemical Biology, 2015, 11, 64-70.	8.0	497
41	Reactivation of oxidized PTP1B and PTEN by thioredoxinÂ1. FEBS Journal, 2014, 281, 3545-3558.	4.7	90
42	Imaging dynamic redox processes with genetically encoded probes. Journal of Molecular and Cellular Cardiology, 2014, 73, 43-49.	1.9	59
43	Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nature Medicine, 2014, 20, 555-560.	30.7	143
44	The â€~mitoflash' probe cpYFP does not respond to superoxide. Nature, 2014, 514, E12-E14.	27.8	109
45	The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. FEMS Yeast Research, 2014, 14, n/a-n/a.	2.3	29
46	In Vivo Imaging of H2O2 Production in Drosophila. Methods in Enzymology, 2013, 526, 61-82.	1.0	21
47	Fluorescent Imaging of Redox Species in Multicellular Organisms. , 2013, , 119-155.		6
48	Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nature Chemical Biology, 2013, 9, 119-125.	8.0	247
49	Inaccurately Assembled Cytochrome <i>c</i> Oxidase Can Lead to Oxidative Stress-Induced Growth Arrest. Antioxidants and Redox Signaling, 2013, 18, 1597-1612.	5.4	43
50	Exposing cells to H2O2: A quantitative comparison between continuous low-dose and one-time high-dose treatments. Free Radical Biology and Medicine, 2013, 60, 325-335.	2.9	91
51	Polysulfides Link H ₂ S to Protein Thiol Oxidation. Antioxidants and Redox Signaling, 2013, 19, 1749-1765.	5.4	410
52	Endoplasmic reticulum: Reduced and oxidized glutathione revisited. Journal of Cell Science, 2013, 126, 1604-17.	2.0	131
53	Monitoring Intracellular Redox Changes in Ozone-Exposed Airway Epithelial Cells. Environmental Health Perspectives, 2013, 121, 312-317.	6.0	19
54	Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO Journal, 2012, 31, 3169-3182.	7.8	154

#	Article	IF	CITATIONS
55	Sustained Submicromolar H2O2 Levels Induce Hepcidin via Signal Transducer and Activator of Transcription 3 (STAT3). Journal of Biological Chemistry, 2012, 287, 37472-37482.	3.4	67
56	Redox Biology on the rise. Biological Chemistry, 2012, 393, 999-1004.	2.5	33
57	Mitochondrial †flashes': a radical concept repHined. Trends in Cell Biology, 2012, 22, 503-508.	7.9	74
58	InÂVivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis. Cell Metabolism, 2011, 14, 819-829.	16.2	298
59	In situ kinetic trapping reveals a fingerprint of reversible protein thiol oxidation in the mitochondrial matrix. Free Radical Biology and Medicine, 2011, 50, 1234-1241.	2.9	15
60	Measuring EGSH and H2O2 with roGFP2-based redox probes. Free Radical Biology and Medicine, 2011, 51, 1943-1951.	2.9	232
61	The yeast CLC protein counteracts vesicular acidification during iron starvation. Journal of Cell Science, 2010, 123, 2342-2350.	2.0	44
62	Fluorescent Protein-Based Redox Probes. Antioxidants and Redox Signaling, 2010, 13, 621-650.	5.4	462
63	Proximity-based Protein Thiol Oxidation by H2O2-scavenging Peroxidases. Journal of Biological Chemistry, 2009, 284, 31532-31540.	3.4	376
64	Real-time imaging of the intracellular glutathione redox potential. Nature Methods, 2008, 5, 553-559.	19.0	762
65	Identification of Redox-Active Cell-Surface Proteins by Mechanism-Based Kinetic Trapping. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pl8.	3.9	15
66	Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1. EMBO Journal, 2007, 26, 3086-3097.	7.8	132
67	Commonly Used Alkylating Agents Limit Persulfide Detection by Converting Protein Persulfides into Thioethers. Angewandte Chemie, 0, , .	2.0	1