John C Rothwell

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7835525/john-c-rothwell-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

745	61,114	127	218
papers	citations	h-index	g-index
791	69,860 ext. citations	5.3	7.78
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
745	Consensus for experimental design in electromyography (CEDE) project: High-density surface electromyography matrix <i>Journal of Electromyography and Kinesiology</i> , 2022 , 64, 102656	2.5	4
744	029 Postural instability in DYT-TOR1A dystonia dynamically dependent on sensory feedback. Journal of Neurology, Neurosurgery and Psychiatry, 2022 , 93, A110.1-A110	5.5	
743	Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. <i>Cerebellum</i> , 2021 , 1	4.3	3
742	The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability. <i>Frontiers in Neuroscience</i> , 2021 , 15, 749042	5.1	0
741	Central nervous system physiology. <i>Clinical Neurophysiology</i> , 2021 , 132, 3043-3083	4.3	1
740	The Signature of Primary Writing Tremor Is Dystonic. Movement Disorders, 2021, 36, 1715-1720	7	10
739	The Phenomenon of Exquisite Motor Control in Tic Disorders and its Pathophysiological Implications. <i>Movement Disorders</i> , 2021 , 36, 1308-1315	7	3
738	Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. <i>Brain Stimulation</i> , 2021 , 14, 277-283	5.1	6
737	A Causal Role for the Right Dorsolateral Prefrontal Cortex in Avoidance of Risky Choices and Making Advantageous Selections. <i>Neuroscience</i> , 2021 , 458, 166-179	3.9	2
736	Stimulating the deprived motor 'hand' area causes facial muscle responses in one-handers. <i>Brain Stimulation</i> , 2021 , 14, 347-350	5.1	2
735	Neural Correlates of Motor Skill Learning Are Dependent on Both Age and Task Difficulty. <i>Frontiers in Aging Neuroscience</i> , 2021 , 13, 643132	5.3	3
734	Preconditioning Stimulus Intensity Alters Paired-Pulse TMS Evoked Potentials. <i>Brain Sciences</i> , 2021 , 11,	3.4	5
733	Only the Fastest Corticospinal Fibers Contribute to ©orticomuscular Coherence. <i>Journal of Neuroscience</i> , 2021 , 41, 4867-4879	6.6	4
732	Effects of rTMS on the brain: is there value in variability?. Cortex, 2021, 139, 43-59	3.8	5
731	The Strength of the Corticospinal Tract Not the Reticulospinal Tract Determines Upper-Limb Impairment Level and Capacity for Skill-Acquisition in the Sub-Acute Post-Stroke Period. <i>Neurorehabilitation and Neural Repair</i> , 2021 , 35, 812-822	4.7	1
730	The Effects of Midline Cerebellar rTMS on Human Pharyngeal Cortical Activity in the Intact Swallowing Motor System. <i>Cerebellum</i> , 2021 , 20, 101-115	4.3	11
729	Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee. <i>Clinical Neurophysiology</i> , 2021 , 132, 819-837	4.3	10

(2020-2021)

728	Reversal of Temporal Discrimination in Cervical Dystonia after Low-Frequency Sensory Stimulation. <i>Movement Disorders</i> , 2021 , 36, 761-766	7	6
727	Defective Somatosensory Inhibition and Plasticity Are Not Required to Develop Dystonia. <i>Movement Disorders</i> , 2021 , 36, 1015-1021	7	9
726	Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions. <i>Movement Disorders</i> , 2021 , 36, 581-593	7	3
725	Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. <i>Clinical Neurophysiology</i> , 2021 , 132, 269-30	06 ^{4.3}	130
724	Disentangling EEG responses to TMS due to cortical and peripheral activations. <i>Brain Stimulation</i> , 2021 , 14, 4-18	5.1	42
723	Corticospinal excitability modulation by pairing peripheral nerve stimulation with cortical states of movement initiation. <i>Journal of Physiology</i> , 2021 , 599, 2471-2482	3.9	6
722	Transcranial Evoked Potentials Can Be Reliably Recorded with Active Electrodes. <i>Brain Sciences</i> , 2021 , 11,	3.4	7
721	Tremor and Dysmetria in Multiple Sclerosis: A Neurophysiological Study. <i>Tremor and Other Hyperkinetic Movements</i> , 2021 , 11, 30	2	O
720	Non-invasive suppression of essential tremor via phase-locked disruption of its temporal coherence. <i>Nature Communications</i> , 2021 , 12, 363	17.4	18
719	Physiological Differences in Hand and Face Areas of the Primary Motor Cortex in Skilled Wind and String Musicians. <i>Neuroscience</i> , 2021 , 455, 141-150	3.9	O
718	Comparison between surface electrodes and ultrasound monitoring to measure TMS evoked muscle contraction. <i>Muscle and Nerve</i> , 2021 , 63, 724-729	3.4	1
717	Evidence for a Window of Enhanced Plasticity in the Human Motor Cortex Following Ischemic Stroke. <i>Neurorehabilitation and Neural Repair</i> , 2021 , 35, 307-320	4.7	4
716	Examining motor evoked potential amplitude and short-interval intracortical inhibition on the up-going and down-going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. <i>European Journal of Neuroscience</i> , 2021 , 53, 2755-2762	3.5	1
715	Neurophysiology of epidurally evoked spinal cord reflexes in clinically motor-complete posttraumatic spinal cord injury. <i>Experimental Brain Research</i> , 2021 , 239, 2605-2620	2.3	0
714	Consensus for experimental design in electromyography (CEDE) project: Terminology matrix. Journal of Electromyography and Kinesiology, 2021 , 59, 102565	2.5	8
713	Reply to: "A Primary Writing Tremor Is a Form of Dystonic Tremor: Is the Debate Settled?". <i>Movement Disorders</i> , 2021 , 36, 1996-1997	7	
712	Two forms of short-interval intracortical inhibition in human motor cortex. <i>Brain Stimulation</i> , 2021 , 14, 1340-1352	5.1	2
711	On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. <i>Frontiers in Neurology</i> , 2020 , 11, 584664	4.1	9

Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain, 2020, 143, 2653-2663 18 710 Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization 709 2.5 64 matrix. Journal of Electromyography and Kinesiology, 2020, 53, 102438 Happy faces selectively increase the excitability of cortical neurons innervating frowning muscles 708 2.3 1 of the mouth. Experimental Brain Research, 2020, 238, 1043-1049 Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy 707 3.9 11 humans. Journal of Physiology, **2020**, 598, 4031-4045 706 Voluntary Inhibitory Control of Chorea: A Case Series. Movement Disorders Clinical Practice, 2020, 7, 308-3.12 Impaired automatic but intact volitional inhibition in primary tic disorders. Brain, 2020, 143, 906-919 705 11.2 20 An Exploration of the Application of Noninvasive Cerebellar Stimulation in the Neuro-rehabilitation of Dysphagia after Stroke (EXCITES) Protocol. Journal of Stroke and Cerebrovascular Diseases, 2020, 2.8 704 5 29, 104586 The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity 2.3 16 703 and swallowing behavior. Experimental Brain Research, 2020, 238, 1719-1733 Pulse width biases the balance of excitation and inhibition recruited by transcranial magnetic 702 5.1 10 stimulation. Brain Stimulation, 2020, 13, 536-538 Cerebellar-Motor Cortex Connectivity: One or Two Different Networks?. Journal of Neuroscience, 6.6 20 701 2020, 40, 4230-4239 New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations. 700 11.2 33 Brain, 2020, 143, 396-406 Temporal discrimination is altered in patients with isolated asymmetric and jerky upper limb 699 7 tremor. Movement Disorders, 2020, 35, 306-315 SICI during changing brain states: Differences in methodology can lead to different conclusions. 698 8 5.1 Brain Stimulation, 2020, 13, 353-356 Possible role of backpropagating action potentials in corticospinal neurons in I-wave periodicity 697 2.9 following a TMS pulse. Neuroscience Research, 2020, 156, 234-236 Plasticity induced by pairing brain stimulation with motor-related states only targets a subset of 696 5.1 5 cortical neurones. Brain Stimulation, 2020, 13, 464-466 Noninvasive Brain Stimulation and Noninvasive Peripheral Stimulation for Neglect Syndrome 695 3.1 Following Acquired Brain Injury. Neuromodulation, 2020, 23, 312-323 Exploratory Randomized Double-Blind Placebo-Controlled Trial of Botulinum Therapy on Grasp 694 4.7 1 Release After Stroke (PrOMBiS). Neurorehabilitation and Neural Repair, 2020, 34, 51-60 Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in 3.9 10 the facial primary motor cortex. Journal of Physiology, 2020, 598, 839-851

(2019-2020)

692	on emotion processing in healthy volunteers. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2020 , 20, 1278-1293	3.5	5	
691	Reply: Pentameric repeat expansions: cortical myoclonus or cortical tremor? and Cortical tremor: a tantalizing conundrum between cortex and cerebellum. <i>Brain</i> , 2020 , 143, e88	11.2	1	
690	Ropinirole, a dopamine agonist with high D affinity, reduces proactive inhibition: A double-blind, placebo-controlled study in healthy adults. <i>Neuropharmacology</i> , 2020 , 179, 108278	5.5	1	
689	Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. <i>Brain Sciences</i> , 2020 , 10,	3.4	2	
688	Transcranial magnetic stimulation as a tool to understand genetic conditions associated with epilepsy. <i>Epilepsia</i> , 2020 , 61, 1818-1839	6.4	2	
68 ₇	Failure to Engage Neural Plasticity through Practice of a High-difficulty Task is Accompanied by Reduced Motor Skill Retention in Older Adults. <i>Neuroscience</i> , 2020 , 451, 22-35	3.9	5	
686	The CloudUPDRS smartphone software in Parkinson's study: cross-validation against blinded human raters. <i>Npj Parkinsonfs Disease</i> , 2020 , 6, 36	9.7	5	
685	Cerebellar transcranial magnetic stimulation: The role of coil type from distinct manufacturers. <i>Brain Stimulation</i> , 2020 , 13, 153-156	5.1	14	
684	Modulation of I-wave generating pathways by theta-burst stimulation: a model of plasticity induction. <i>Journal of Physiology</i> , 2019 , 597, 5963-5971	3.9	12	
683	Multimodal characterization of the visual network in Huntington's disease gene carriers. <i>Clinical Neurophysiology</i> , 2019 , 130, 2053-2059	4.3		
682	Direction of TDCS current flow in human sensorimotor cortex influences behavioural learning. <i>Brain Stimulation</i> , 2019 , 12, 684-692	5.1	22	
681	The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. <i>Movement Disorders</i> , 2019 , 34, 936-949	7	29	
680	Vestibulo masseteric reflex and acoustic masseteric Reflex. Normative data and effects of age and gender. <i>Clinical Neurophysiology</i> , 2019 , 130, 1511-1519	4.3	7	
679	Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings. <i>Brain Stimulation</i> , 2019 , 12, 1205-1212	5.1	15	
678	TMS excitability study in essential tremor: Absence of gabaergic changes assessed by silent period recordings. <i>Neurophysiologie Clinique</i> , 2019 , 49, 309-315	2.7	4	
677	The effect of salient stimuli on neural oscillations, isometric force, and their coupling. <i>NeuroImage</i> , 2019 , 198, 221-230	7.9	18	
676	The Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Advancing Parkinson's Disease With Dysphagia: Double Blind Randomized Clinical Trial. <i>Neurorehabilitation and Neural Repair</i> , 2019 , 33, 442-452	4.7	17	
675	The use of transcranial magnetic stimulation as a treatment for movement disorders: A critical review. <i>Movement Disorders</i> , 2019 , 34, 769-782	7	25	

674	The unsolved role of heightened connectivity from the unaffected hemisphere to paretic arm muscles in chronic stroke. <i>Clinical Neurophysiology</i> , 2019 , 130, 781-788	4.3	4
673	Cerebellar repetitive transcranial magnetic stimulation restores pharyngeal brain activity and swallowing behaviour after disruption by a cortical virtual lesion. <i>Journal of Physiology</i> , 2019 , 597, 2533	3-2546	24
672	The Effect of 20 Hz versus 1 Hz Repetitive Transcranial Magnetic Stimulation on Motor Dysfunction in Parkinson's Disease: Which Is More Beneficial?. <i>Journal of Parkinsonfs Disease</i> , 2019 , 9, 379-387	5.3	8
671	The effect of frontoparietal paired associative stimulation on decision-making and working memory. <i>Cortex</i> , 2019 , 117, 266-276	3.8	13
670	Remission in dystonia - Systematic review of the literature and meta-analysis. <i>Parkinsonism and Related Disorders</i> , 2019 , 66, 9-15	3.6	13
669	Exploring the connectivity between the cerebellum and facial motor cortex. <i>Brain Stimulation</i> , 2019 , 12, 1586-1587	5.1	4
668	Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix. <i>Journal of Electromyography and Kinesiology</i> , 2019 , 48, 128-144	2.5	43
667	Ten-Year Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. <i>Movement Disorders</i> , 2019 , 34, 1616-1628	7	21
666	A case of congenital hypoplasia of the left cerebellar hemisphere and ipsilateral cortical myoclonus. <i>Movement Disorders</i> , 2019 , 34, 1745-1747	7	6
665	Lack of evidence for interhemispheric inhibition in the lower face primary motor cortex. <i>Clinical Neurophysiology</i> , 2019 , 130, 1917-1925	4.3	4
664	Twenty years on: Myoclonus-dystonia and Barcoglycan - neurodevelopment, channel, and signaling dysfunction. <i>Movement Disorders</i> , 2019 , 34, 1588-1601	7	15
663	Sex differences in Parkinson's disease: A transcranial magnetic stimulation study. <i>Movement Disorders</i> , 2019 , 34, 1873-1881	7	7
662	Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation. <i>Brain Research</i> , 2019 , 1710, 181-187	3.7	12
661	Changes in recruitment of motor cortex excitation and inhibition in patients with drug-induced tardive syndromes. <i>Neurophysiologie Clinique</i> , 2019 , 49, 33-40	2.7	3
660	Changes in the Excitability of Corticobulbar Projections Due to Intraoral Cooling with Ice. <i>Dysphagia</i> , 2019 , 34, 708-712	3.7	3
659	Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation. <i>Human Brain Mapping</i> , 2019 , 40, 904-915	5.9	54
658	Repetitive transcranial magnetic stimulation for treatment of tardive syndromes: double randomized clinical trial. <i>Journal of Neural Transmission</i> , 2019 , 126, 183-191	4.3	6
657	Cortical Paired Associative Stimulation Influences Response Inhibition: Cortico-cortical and Cortico-subcortical Networks. <i>Biological Psychiatry</i> , 2019 , 85, 355-363	7.9	24

656	Voluntary inhibitory motor control over involuntary tic movements. <i>Movement Disorders</i> , 2018 , 33, 937	-9⁄46	38	
655	High motor variability in DYT1 dystonia is associated with impaired visuomotor adaptation. <i>Scientific Reports</i> , 2018 , 8, 3653	4.9	12	
654	Reappraising the role of motor surround inhibition in dystonia. <i>Journal of the Neurological Sciences</i> , 2018 , 390, 178-183	3.2	6	
653	Cerebellar and brainstem functional abnormalities in patients with primary orthostatic tremor. <i>Movement Disorders</i> , 2018 , 33, 1024-1025	7	7	
652	The Role of Task Difficulty in Learning a Visuomotor Skill. <i>Medicine and Science in Sports and Exercise</i> , 2018 , 50, 1842-1849	1.2	8	
651	Saliency Detection as a Reactive Process: Unexpected Sensory Events Evoke Corticomuscular Coupling. <i>Journal of Neuroscience</i> , 2018 , 38, 2385-2397	6.6	39	
650	Long-interval intracortical inhibition as biomarker for epilepsy: a transcranial magnetic stimulation study. <i>Brain</i> , 2018 , 141, 409-421	11.2	13	
649	Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease. <i>Movement Disorders</i> , 2018 , 33, 440-448	7	14	
648	Selective Suppression of Local Interneuron Circuits in Human Motor Cortex Contributes to Movement Preparation. <i>Journal of Neuroscience</i> , 2018 , 38, 1264-1276	6.6	48	
647	TMS of primary motor cortex with a biphasic pulse activates two independent sets of excitable neurones. <i>Brain Stimulation</i> , 2018 , 11, 558-565	5.1	26	
646	Effects of pulse width, waveform and current direction in the cortex: A combined cTMS-EEG study. <i>Brain Stimulation</i> , 2018 , 11, 1063-1070	5.1	29	
645	Short-interval intracortical inhibition: Comparison between conventional and threshold-tracking techniques. <i>Brain Stimulation</i> , 2018 , 11, 806-817	5.1	34	
644	Effect of donepezil on transcranial magnetic stimulation parameters in Alzheimer's disease. <i>Alzheimerfs and Dementia: Translational Research and Clinical Interventions</i> , 2018 , 4, 103-107	6	11	
643	Explicit motor sequence learning with the paretic arm after stroke. <i>Disability and Rehabilitation</i> , 2018 , 40, 323-328	2.4	3	
642	Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits. <i>Neuroscientist</i> , 2018 , 24, 246-260	7.6	62	
641	Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation. <i>Neuromodulation</i> , 2018 , 21, 348-354	3.1	26	
640	Response to the letter to the editor by Reilmann et al referring to our article titled "Motor cortex synchronization influences the rhythm of motor performance in premanifest Huntington's disease". <i>Movement Disorders</i> , 2018 , 33, 1371	7		
639	Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. <i>Journal of Applied Physiology</i> , 2018 , 124, 1502-1518	3.7	28	

638	Observing Without Acting: A Balance of Excitation and Suppression in the Human Corticospinal Pathway?. <i>Frontiers in Neuroscience</i> , 2018 , 12, 347	5.1	13
637	Variability and Predictors of Response to Continuous Theta Burst Stimulation: A TMS-EEG Study. <i>Frontiers in Neuroscience</i> , 2018 , 12, 400	5.1	41
636	Cervical dystonia: Normal auditory mismatch negativity and abnormal somatosensory mismatch negativity. <i>Clinical Neurophysiology</i> , 2018 , 129, 1947-1954	4.3	2
635	Similar effect of intermittent theta burst and sham stimulation on corticospinal excitability: A 5-day repeated sessions study. <i>European Journal of Neuroscience</i> , 2018 , 48, 1990-2000	3.5	13
634	Evidence for a subcortical contribution to intracortical facilitation. <i>European Journal of Neuroscience</i> , 2018 , 47, 1311-1319	3.5	20
633	Neurophysiological correlates of bradykinesia in Parkinson's disease. <i>Brain</i> , 2018 , 141, 2432-2444	11.2	51
632	Inter-cortical modulation from premotor to motor plasticity. <i>Journal of Physiology</i> , 2018 , 596, 4207-4217	7 3.9	7
631	Functional strength training versus movement performance therapy for upper limb motor recovery early after stroke: a RCT. <i>Efficacy and Mechanism Evaluation</i> , 2018 , 5, 1-112	1.7	8
630	Reappraisal of cortical myoclonus: A retrospective study of clinical neurophysiology. <i>Movement Disorders</i> , 2018 , 33, 339-341	7	14
629	Cortical inhibitory function in cervical dystonia. Clinical Neurophysiology, 2018 , 129, 466-472	4.3	14
628	A unifying motor control framework for task-specific dystonia. <i>Nature Reviews Neurology</i> , 2018 , 14, 116-	-134	25
627	tDCS changes in motor excitability are specific to orientation of current flow. <i>Brain Stimulation</i> , 2018 , 11, 289-298	5.1	80
626	Assessing TMS-induced D and I waves with spinal H-reflexes. <i>Journal of Neurophysiology</i> , 2018 , 119, 933-	- 9.4 3	13
625	Transcranial brain stimulation: Past and future. <i>Brain and Neuroscience Advances</i> , 2018 , 2, 239821281881	1,8070	11
624	Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. <i>Frontiers in Neurology</i> , 2018 , 9, 935	4.1	7
623	Measurement of motor-evoked potential resting threshold and amplitude of proximal and distal arm muscles in healthy adults. A reliability study. <i>Journal of Rehabilitation and Assistive Technologies Engineering</i> , 2018 , 5, 2055668318765406	1.7	Ο
622	Cerebellar Theta-Burst Stimulation Impairs Memory Consolidation in Eyeblink Classical Conditioning. <i>Neural Plasticity</i> , 2018 , 2018, 6856475	3.3	10
621	High frequency somatosensory stimulation in dystonia: Evidence fordefective inhibitory plasticity. Movement Disorders, 2018, 33, 1902-1909	7	31

620	Motor cortical excitability during voluntary inhibition of involuntary tic movements. <i>Movement Disorders</i> , 2018 , 33, 1804-1809	7	18
619	Delineating cerebellar mechanisms in DYT11 myoclonus-dystonia. <i>Movement Disorders</i> , 2018 , 33, 1956-	1 9 61	5
618	Dystonia. <i>Nature Reviews Disease Primers</i> , 2018 , 4, 25	51.1	117
617	Reply: "Reappraisal of cortical myoclonus: Electrophysiology is the gold standard". <i>Movement Disorders</i> , 2018 , 33, 1191	7	1
616	Parkinsonian signs in patients with cervical dystonia treated with pallidal deep brain stimulation. Brain, 2018 , 141, 3023-3034	11.2	20
615	Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. <i>Clinical Neurophysiology</i> , 2017 , 128, 589-603	4.3	166
614	Chronic Stroke Survivors Improve Reaching Accuracy by Reducing Movement Variability at the Trained Movement Speed. <i>Neurorehabilitation and Neural Repair</i> , 2017 , 31, 499-508	4.7	10
613	Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2017 , 372,	5.8	38
612	The effect of transcranial direct current stimulation on motor sequence learning and upper limb function after stroke. <i>Clinical Neurophysiology</i> , 2017 , 128, 1389-1398	4.3	23
611	Endophenotyping in idiopathic adult onset cervical dystonia. Clinical Neurophysiology, 2017, 128, 1142-	1 14.457	9
610	High frequency somatosensory stimulation increases sensori-motor inhibition and leads to perceptual improvement in healthy subjects. <i>Clinical Neurophysiology</i> , 2017 , 128, 1015-1025	4.3	32
609	TMS-evoked long-lasting artefacts: A new adaptive algorithm for EEG signal correction. <i>Clinical Neurophysiology</i> , 2017 , 128, 1563-1574	4.3	31
608	Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease. <i>Movement Disorders</i> , 2017 , 32, 1174-1182	7	36
607	Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition. <i>Brain Stimulation</i> , 2017 , 10, 944-951	5.1	20
606	Probing the timing network: A continuous theta burst stimulation study of temporal categorization. <i>Neuroscience</i> , 2017 , 356, 167-175	3.9	14
605	Reward and punishment enhance motor adaptation in stroke. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2017 , 88, 730-736	5.5	49
604	Modulation of iTBS after-effects via concurrent directional TDCS: A proof of principle study. <i>Brain Stimulation</i> , 2017 , 10, 744-747	5.1	16
603	Impaired intracortical inhibition demonstrated in vivo in people with Dravet syndrome. <i>Neurology</i> , 2017 , 88, 1659-1665	6.5	23

602	Stimulating cognition in schizophrenia: A controlled pilot study of the effects of prefrontal transcranial direct current stimulation upon memory and learning. <i>Brain Stimulation</i> , 2017 , 10, 560-566	5.1	43
601	Variability in neural excitability and plasticity induction in the human cortex: A brain stimulation study. <i>Brain Stimulation</i> , 2017 , 10, 588-595	5.1	64
600	Plasticity induced by non-invasive transcranial brain stimulation: A position paper. <i>Clinical Neurophysiology</i> , 2017 , 128, 2318-2329	4.3	163
599	Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke-Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial. <i>Frontiers in Neurology</i> , 2017 , 8, 733	4.1	10
598	Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. <i>Movement Disorders</i> , 2017 , 32, 1264-1310	7	375
597	The associative brain at work: Evidence from paired associative stimulation studies in humans. <i>Clinical Neurophysiology</i> , 2017 , 128, 2140-2164	4.3	76
596	16 A randomised controlled trial of deep brain stimulation in obsessive compulsive disorder: a comparison of ventral capsule/ventral striatum and subthalamic nucleus targets. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2017 , 88, A8.2-A9	5.5	3
595	Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia. <i>Brain</i> , 2017 , 140, 2490-2497	11.2	23
594	Pathophysiological heterogeneity in Parkinson's disease: Neurophysiological insights from LRRK2 mutations. <i>Movement Disorders</i> , 2017 , 32, 1333-1335	7	5
593	Unmyelinated Peripheral Nerves Can Be Stimulated in Vitro Using Pulsed Ultrasound. <i>Ultrasound in Medicine and Biology</i> , 2017 , 43, 2269-2283	3.5	28
592	Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> , 2017 , 128, 2043-2047	4.3	17
591	Time-dependent functional role of the contralesional motor cortex after stroke. <i>NeuroImage: Clinical</i> , 2017 , 16, 165-174	5.3	22
590	The reliability of commonly used electrophysiology measures. <i>Brain Stimulation</i> , 2017 , 10, 1102-1111	5.1	36
589	Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia. <i>Movement Disorders</i> , 2017 , 32, 141-148	7	50
588	Pulse Duration as Well as Current Direction Determines the Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction. <i>Brain Stimulation</i> , 2017 , 10, 106-115	5.1	61
587	PO221 Pathological mechanisms of glycine receptor antibodies. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2017 , 88, A70.2-A70	5.5	
586	[P3008]: EFFECT OF DONEPEZIL ON TRANSCRANIAL MAGNETIC STIMULATION PARAMETERS IN ALZHEIMER's DISEASE 2017 , 13, P1015-P1016		
585	Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. <i>ELife</i> , 2017 , 6,	8.9	87

(2016-2017)

584	Dissociation between behavior and motor cortical excitability before and during ballistic wrist flexion and extension in young and old adults. <i>PLoS ONE</i> , 2017 , 12, e0186585	3.7	3
583	Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury. <i>Neural Regeneration Research</i> , 2017 , 12, 1933-1938	4.5	28
582	Motor Outcomes of Repetitive Transcranial Magnetic Stimulation Are Dependent on the Specific Interneuron Circuit Targeted. <i>Biosystems and Biorobotics</i> , 2017 , 3-7	0.2	
581	Limb Heaviness: A Perceptual Phenomenon Associated With Poststroke Fatigue?. Neurorehabilitation and Neural Repair, 2016, 30, 360-2	4.7	9
580	Are studies of motor cortex plasticity relevant in human patients with Parkinson's disease?. <i>Clinical Neurophysiology</i> , 2016 , 127, 50-59	4.3	16
579	Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. <i>Cerebellum and Ataxias</i> , 2016 , 3, 19	1.7	34
578	Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech. Journal of Neurophysiology, 2016 , 116, 2023-2032	3.2	8
577	D8 Tms-eeg markers of inhibitory deficits in huntington disease. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2016 , 87, A36.2-A36	5.5	
576	Abnormal blink reflex recovery cycle in manifesting and nonmanifesting carriers of the DYT1 gene mutation. <i>NeuroReport</i> , 2016 , 27, 1046-9	1.7	4
575	Hyperkinetic disorders and loss of synaptic downscaling. <i>Nature Neuroscience</i> , 2016 , 19, 868-75	25.5	70
574	Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. <i>Neuroscientist</i> , 2016 , 22, 83-97	7.6	126
573	Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: A review and meta-analysis. <i>Clinical Neurophysiology</i> , 2016 , 127, 946-955	4.3	81
572	Effects of Anodal High-Definition Transcranial Direct Current Stimulation on Bilateral Sensorimotor Cortex Activation During Sequential Finger Movements: An fNIRS Study. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 876, 351-359	3.6	26
571	Somatosensory Temporal Discrimination Threshold Involves Inhibitory Mechanisms in the Primary Somatosensory Area. <i>Journal of Neuroscience</i> , 2016 , 36, 325-35	6.6	61
570	Developing a Tool for Remote Digital Assessment of Parkinson's Disease. <i>Movement Disorders Clinical Practice</i> , 2016 , 3, 59-64	2.2	31
569	Modulation of frontal effective connectivity during speech. <i>NeuroImage</i> , 2016 , 140, 126-33	7.9	34
568	Effect of coil orientation on strength-duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> , 2016 , 127, 675	5 468 3	54
567	High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects. Clinical Neurophysiology, 2016 , 127, 817-820	4.3	16

566	Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimulation, 2016 , 9, 323-335	5.1	229
565	Neurophysiology of rTMS: Important Caveats When Interpreting the Results of Therapeutic Interventions 2016 , 1-10		4
564	Effects of Quadripulse Stimulation on Human Motor Cortex Excitability: A Replication Study. <i>Brain Stimulation</i> , 2016 , 9, 148-50	5.1	22
563	Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study. <i>PLoS ONE</i> , 2016 , 11, e0151667	3.7	5
562	Motor Cortex Plasticity during Unilateral Finger Movement with Mirror Visual Feedback. <i>Neural Plasticity</i> , 2016 , 2016, 6087896	3.3	21
561	Controllable Pulse Parameter TMS and TMS-EEG As Novel Approaches to Improve Neural Targeting with rTMS in Human Cerebral Cortex. <i>Frontiers in Neural Circuits</i> , 2016 , 10, 97	3.5	17
560	Validation of "laboratory-supported" criteria for functional (psychogenic) tremor. <i>Movement Disorders</i> , 2016 , 31, 555-62	7	59
559	The Motor Cortex Modulates the "When" of Tic Generation in the Rat Striatal Disinhibition Model. <i>Movement Disorders</i> , 2016 , 31, 637	7	
558	Membrane resistance and shunting inhibition: where biophysics meets state-dependent human neurophysiology. <i>Journal of Physiology</i> , 2016 , 594, 2719-28	3.9	46
557	Can Motor Recovery in Stroke Be Improved by Non-invasive Brain Stimulation?. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 957, 313-323	3.6	11
556	Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control. <i>Brain Stimulation</i> , 2016 , 9, 518-24	5.1	18
555	Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making. <i>Brain Stimulation</i> , 2016 , 9, 601-8	5.1	28
554	Motor training reduces surround inhibition in the motor cortex. Clinical Neurophysiology, 2016 , 127, 248	324.83	4
553	Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control. <i>Journal of Neuroscience</i> , 2016 , 36, 10545-10559	6.6	20
552	Natural variation in sensory-motor white matter organization influences manifestations of Huntington's disease. <i>Human Brain Mapping</i> , 2016 , 37, 4615-4628	5.9	15
551	Dopaminergic treatment modulates sensory attenuation at the onset of the movement in Parkinson's disease: A test of a new framework for bradykinesia. <i>Movement Disorders</i> , 2016 , 31, 143-6	7	19
550	The dissociable effects of punishment and reward on motor learning. <i>Nature Neuroscience</i> , 2015 , 18, 597-602	25.5	191
549	Theta burst stimulation over the supplementary motor area in Parkinson's disease. <i>Journal of Neurology</i> , 2015 , 262, 357-64	5.5	26

(2015-2015)

548	Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome. <i>Brain Stimulation</i> , 2015 , 8, 603-12	5.1	26
547	Erratum to Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation Brain Stimulation 8 (2015) 442 454. <i>Brain Stimulation</i> , 2015 , 8, 992	5.1	2
546	Can levodopa-induced dyskinesias go beyond the motor circuit?. Brain, 2015, 138, 242-4	11.2	8
545	Anaesthesia changes perceived finger width but not finger length. <i>Experimental Brain Research</i> , 2015 , 233, 1761-71	2.3	11
544	Transcranial magnetic stimulation follow-up study in early Parkinson's disease: A decline in compensation with disease progression?. <i>Movement Disorders</i> , 2015 , 30, 1098-106	7	39
543	Interaction between visual and motor cortex: a transcranial magnetic stimulation study. <i>Journal of Physiology</i> , 2015 , 593, 2365-77	3.9	28
542	Distinct influence of hand posture on cortical activity during human grasping. <i>Journal of Neuroscience</i> , 2015 , 35, 4882-9	6.6	29
541	A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. <i>Nature Reviews Neuroscience</i> , 2015 , 16, 719-32	13.5	290
540	An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation?. <i>BMC Neurology</i> , 2015 , 15, 109	3.1	19
539	What Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity. <i>Cerebral Cortex</i> , 2015 , 25, 2346-53	5.1	75
538	Primary writing tremor is a dystonic trait: Evidence from an instructive family. <i>Journal of the Neurological Sciences</i> , 2015 , 356, 210-1	3.2	9
537	All in the blink of an eye: new insight into cerebellar and brainstem function in DYT1 and DYT6 dystonia. <i>European Journal of Neurology</i> , 2015 , 22, 762-7	6	28
536	Post-stroke fatigue: a deficit in corticomotor excitability?. <i>Brain</i> , 2015 , 138, 136-48	11.2	52
535	Transcranial Direct Current Stimulation Effects on Single and Paired Flash Visual Evoked Potentials. <i>Clinical EEG and Neuroscience</i> , 2015 , 46, 208-13	2.3	12
534	The role of dopamine in motor flexibility. Journal of Cognitive Neuroscience, 2015, 27, 365-76	3.1	20
533	A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot[therapy for the impaired upper limb in ub-acute and chronic stroke. <i>NeuroRehabilitation</i> , 2015 , 37, 181-91	2	49
532	High-frequency focal repetitive cerebellar stimulation induces prolonged increases in human pharyngeal motor cortex excitability. <i>Journal of Physiology</i> , 2015 , 593, 4963-77	3.9	32
531	Reply to letter: Transcranial magnetic stimulation for Parkinson's disease. <i>Movement Disorders</i> , 2015 , 30, 1973-4	7	1

530	A model of poststroke fatigue based on sensorimotor deficits. <i>Current Opinion in Neurology</i> , 2015 , 28, 582-6	7.1	16
529	Overactive visuomotor connections underlie the photoparoxysmal response. A TMS study. <i>Epilepsia</i> , 2015 , 56, 1828-35	6.4	18
528	Introduction to Nonconvulsive Brain Stimulation: Focus on Transcranial Magnetic Stimulation 2015 , 149	9-164	
527	Proprioception in motor learning: lessons from a deafferented subject. <i>Experimental Brain Research</i> , 2015 , 233, 2449-59	2.3	26
526	Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. <i>Brain Stimulation</i> , 2015 , 8, 442-54	5.1	78
525	Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. <i>Brain Stimulation</i> , 2015 , 8, 993-1006	5.1	74
524	Inter-individual variation in the after-effect of paired associative stimulation can be predicted from short-interval intracortical inhibition with the threshold tracking method. <i>Brain Stimulation</i> , 2015 , 8, 10	5 ⁵ 13	34
523	Changes in motor cortical excitability in patients with Sydenham's chorea. <i>Movement Disorders</i> , 2015 , 30, 259-62	7	16
522	Tremor in Charcot-Marie-Tooth disease: No evidence of cerebellar dysfunction. <i>Clinical Neurophysiology</i> , 2015 , 126, 1817-24	4.3	11
521	Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. <i>Clinical Neurophysiology</i> , 2015 , 126, 1071-1107	4.3	1326
521 520	nerves: Basic principles and procedures for routine clinical and research application. An updated	4·3 5·2	1326 11
	nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. <i>Clinical Neurophysiology</i> , 2015 , 126, 1071-1107 Investigations of motor-cortex cortical plasticity following facilitatory and inhibitory transcranial theta-burst stimulation in schizophrenia: a proof-of-concept study. <i>Journal of Psychiatric Research</i> ,		
520	nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. <i>Clinical Neurophysiology</i> , 2015 , 126, 1071-1107 Investigations of motor-cortex cortical plasticity following facilitatory and inhibitory transcranial theta-burst stimulation in schizophrenia: a proof-of-concept study. <i>Journal of Psychiatric Research</i> , 2015 , 61, 196-204 Variability in response to transcranial direct current stimulation of the motor cortex. <i>Brain</i>	5.2	11
520	nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. <i>Clinical Neurophysiology</i> , 2015 , 126, 1071-1107 Investigations of motor-cortex cortical plasticity following facilitatory and inhibitory transcranial theta-burst stimulation in schizophrenia: a proof-of-concept study. <i>Journal of Psychiatric Research</i> , 2015 , 61, 196-204 Variability in response to transcranial direct current stimulation of the motor cortex. <i>Brain Stimulation</i> , 2014 , 7, 468-75 Motor sequence learning and motor adaptation in primary cervical dystonia. <i>Journal of Clinical</i>	5.2	11 505
520 519 518	nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. <i>Clinical Neurophysiology</i> , 2015 , 126, 1071-1107 Investigations of motor-cortex cortical plasticity following facilitatory and inhibitory transcranial theta-burst stimulation in schizophrenia: a proof-of-concept study. <i>Journal of Psychiatric Research</i> , 2015 , 61, 196-204 Variability in response to transcranial direct current stimulation of the motor cortex. <i>Brain Stimulation</i> , 2014 , 7, 468-75 Motor sequence learning and motor adaptation in primary cervical dystonia. <i>Journal of Clinical Neuroscience</i> , 2014 , 21, 934-8 Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal	5.2 5.1 2.2	11 505 14
520519518517	nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. <i>Clinical Neurophysiology</i> , 2015 , 126, 1071-1107 Investigations of motor-cortex cortical plasticity following facilitatory and inhibitory transcranial theta-burst stimulation in schizophrenia: a proof-of-concept study. <i>Journal of Psychiatric Research</i> , 2015 , 61, 196-204 Variability in response to transcranial direct current stimulation of the motor cortex. <i>Brain Stimulation</i> , 2014 , 7, 468-75 Motor sequence learning and motor adaptation in primary cervical dystonia. <i>Journal of Clinical Neuroscience</i> , 2014 , 21, 934-8 Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing. <i>Journal of Physiology</i> , 2014 , 592, 695-709 FAST INdiCATE Trial protocol. Clinical efficacy of functional strength training for upper limb motor recovery early after stroke: neural correlates and prognostic indicators. <i>International Journal of</i>	5.2 5.1 2.2 3.9	115051439
520519518517516	nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. <i>Clinical Neurophysiology</i> , 2015 , 126, 1071-1107 Investigations of motor-cortex cortical plasticity following facilitatory and inhibitory transcranial theta-burst stimulation in schizophrenia: a proof-of-concept study. <i>Journal of Psychiatric Research</i> , 2015 , 61, 196-204 Variability in response to transcranial direct current stimulation of the motor cortex. <i>Brain Stimulation</i> , 2014 , 7, 468-75 Motor sequence learning and motor adaptation in primary cervical dystonia. <i>Journal of Clinical Neuroscience</i> , 2014 , 21, 934-8 Transcranial direct current stimulation reverses neurophysiological and behavioural effects of focal inhibition of human pharyngeal motor cortex on swallowing. <i>Journal of Physiology</i> , 2014 , 592, 695-709 FAST INdiCATE Trial protocol. Clinical efficacy of functional strength training for upper limb motor recovery early after stroke: neural correlates and prognostic indicators. <i>International Journal of Stroke</i> , 2014 , 9, 240-5 Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. <i>Nature Reviews</i>	5.2 5.1 2.2 3.9 6.3	1150514393

512	P282: Effect of coil orientation on strength-duration time constant with controllable pulse parameter transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> , 2014 , 125, S123	4.3	3	
511	The role of the cerebellum in the pathogenesis of cortical myoclonus. <i>Movement Disorders</i> , 2014 , 29, 437-43	7	32	
510	Normal motor adaptation in cervical dystonia: a fundamental cerebellar computation is intact. <i>Cerebellum</i> , 2014 , 13, 558-67	4.3	27	
509	Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. <i>Journal of Physiology</i> , 2014 , 592, 4115-28	3.9	150	
508	Using voluntary motor commands to inhibit involuntary arm movements. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20141139	4.4	16	
507	Longterm deep brain stimulation withdrawal: clinical stability despite electrophysiological instability. <i>Journal of the Neurological Sciences</i> , 2014 , 342, 197-9	3.2	22	
506	Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation. <i>Clinical Neurophysiology</i> , 2014 , 125, 585-92	4.3	24	
505	Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials. <i>NeuroImage</i> , 2014 , 98, 225-32	7.9	56	
504	Exploring brainstem function in multiple sclerosis by combining brainstem reflexes, evoked potentials, clinical and MRI investigations. <i>Clinical Neurophysiology</i> , 2014 , 125, 2286-2296	4.3	39	
503	Testing a neurobiological model of depersonalization disorder using repetitive transcranial magnetic stimulation. <i>Brain Stimulation</i> , 2014 , 7, 252-9	5.1	21	
502	Interaction between different interneuron networks involved in human associative plasticity. <i>Brain Stimulation</i> , 2014 , 7, 658-64	5.1	18	
501	Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). <i>Clinical Neurophysiology</i> , 2014 , 125, 2150-2206	4.3	1209	
500	Movement speed is biased by prior experience. Journal of Neurophysiology, 2014, 111, 128-34	3.2	26	
499	Associative plasticity in surround inhibition circuits in human motor cortex. <i>European Journal of Neuroscience</i> , 2014 , 40, 3704-10	3.5	6	
498	Bi-directional modulation of somatosensory mismatch negativity with transcranial direct current stimulation: an event related potential study. <i>Journal of Physiology</i> , 2014 , 592, 745-57	3.9	27	
497	An unavoidable modulation? Sensory attention and human primary motor cortex excitability. <i>European Journal of Neuroscience</i> , 2014 , 40, 2850-8	3.5	17	
496	Motor 'surround inhibition' is not correlated with activity in surround muscles. <i>European Journal of Neuroscience</i> , 2014 , 40, 2541-7	3.5	10	
495	Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. <i>Movement Disorders</i> , 2014 , 29, 1304-7	7	40	

494	A reflection on plasticity research in writing dystonia. <i>Movement Disorders</i> , 2014 , 29, 980-7	7	30
493	Subcortical control of precision grip after human spinal cord injury. <i>Journal of Neuroscience</i> , 2014 , 34, 7341-50	6.6	36
492	Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping. <i>Journal of Neural Engineering</i> , 2014 , 11, 056023	5	46
491	The neurophysiological features of myoclonus-dystonia and differentiation from other dystonias. JAMA Neurology, 2014 , 71, 612-9	17.2	31
490	Characterization of corticobulbar pharyngeal neurophysiology in dysphagic patients with Parkinson's disease. <i>Clinical Gastroenterology and Hepatology</i> , 2014 , 12, 2037-45.e1-4	6.9	21
489	Opposite effects of weak transcranial direct current stimulation on different phases of short interval intracortical inhibition (SICI). Experimental Brain Research, 2013, 225, 321-31	2.3	20
488	1-Hz repetitive transcranial magnetic stimulation and diphasic dyskinesia in Parkinson's disease. <i>Movement Disorders</i> , 2013 , 28, 245-6	7	5
487	Motor sequence learning and motor adaptation in primary cervical dystonia. <i>Journal of the Neurological Sciences</i> , 2013 , 333, e130-e131	3.2	2
486	Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: a proof of principle, sham-controlled study. <i>Neuroscience Letters</i> , 2013 , 553, 148-52	3.3	35
485	Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 535	- 4 2	8
484	Pathophysiology of somatosensory abnormalities in Parkinson disease. <i>Nature Reviews Neurology</i> , 2013 , 9, 687-97	15	175
483	In memoriamVahe E. Amassian. <i>Brain Stimulation</i> , 2013 , 6, 99-100	5.1	
482	The influence of deep brain stimulation intensity and duration on symptoms evolution in an OFF stimulation dystonia study. <i>Brain Stimulation</i> , 2013 , 6, 500-5	5.1	28
481	History of exposure to dopaminergic medication does not affect motor cortex plasticity and excitability in Parkinson's disease. <i>Clinical Neurophysiology</i> , 2013 , 124, 697-707	4.3	29
480	Opposing roles of sensory and parietal cortices in awareness in a bistable motion illusion. <i>Neuropsychologia</i> , 2013 , 51, 2479-84	3.2	7
479	Cerebellum-dependent associative learning deficits in primary dystonia are normalized by rTMS and practice. <i>European Journal of Neuroscience</i> , 2013 , 38, 2166-71	3.5	39
478	The role of interneuron networks in driving human motor cortical plasticity. <i>Cerebral Cortex</i> , 2013 , 23, 1593-605	5.1	484
477	Tremor in inflammatory neuropathies. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1282	2 <i>5</i> 75	41

(2012-2013)

476	Cerebellar learning distinguishes inflammatory neuropathy with and without tremor. <i>Neurology</i> , 2013 , 80, 1867-73	6.5	20
475	Secondary and primary dystonia: pathophysiological differences. <i>Brain</i> , 2013 , 136, 2038-49	11.2	84
474	Sensory tricks in primary cervical dystonia depend on visuotactile temporal discrimination. <i>Movement Disorders</i> , 2013 , 28, 356-61	7	25
473	Priming pharyngeal motor cortex by repeated paired associative stimulation: implications for dysphagia neurorehabilitation. <i>Neurorehabilitation and Neural Repair</i> , 2013 , 27, 355-62	4.7	25
472	Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. <i>International Journal of Neuroscience</i> , 2013 , 123, 425-32	2	22
471	Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. <i>Journal of Cognitive Neuroscience</i> , 2013 , 25, 558-70	3.1	43
470	Failure of explicit movement control in patients with functional motor symptoms. <i>Movement Disorders</i> , 2013 , 28, 517-23	7	37
469	Intracortical circuits, sensorimotor integration and plasticity in human motor cortical projections to muscles of the lower face. <i>Journal of Physiology</i> , 2013 , 591, 1889-906	3.9	19
468	Punishment-induced behavioral and neurophysiological variability reveals dopamine-dependent selection of kinematic movement parameters. <i>Journal of Neuroscience</i> , 2013 , 33, 3981-8	6.6	19
467	Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial. <i>Neurorehabilitation and Neural Repair</i> , 2013 , 27, 592-601	4.7	109
466	Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination. <i>Movement Disorders</i> , 2013 , 28, 1874-7	7	25
465	Remote effects of intermittent theta burst stimulation of the human pharyngeal motor system. <i>European Journal of Neuroscience</i> , 2012 , 36, 2493-9	3.5	15
464	Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex. <i>Experimental Brain Research</i> , 2012 , 217, 15-23	2.3	35
463	Overview of neurophysiology of movement control. Clinical Neurology and Neurosurgery, 2012, 114, 432	2-5	21
462	Secondary cervical dystonia caused by cerebellar cystic lesiona case study with transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> , 2012 , 123, 418-9	4.3	4
461	A checklist for assessing the methodological quality of studies using transcranial magnetic stimulation to study the motor system: an international consensus study. <i>Clinical Neurophysiology</i> , 2012 , 123, 1698-704	4.3	138
460	Cerebellar theta burst stimulation impairs eyeblink classical conditioning. <i>Journal of Physiology</i> , 2012 , 590, 887-97	3.9	51
459	Cerebellar modulation of human associative plasticity. <i>Journal of Physiology</i> , 2012 , 590, 2365-74	3.9	114

458	Practice-related reduction of electromyographic mirroring activity depends on basal levels of interhemispheric inhibition. <i>European Journal of Neuroscience</i> , 2012 , 36, 3749-57	3.5	15
457	Physiological evidence consistent with reduced neuroplasticity in human adolescents born preterm. Journal of Neuroscience, 2012, 32, 16410-6	6.6	38
456	Targeting unlesioned pharyngeal motor cortex improves swallowing in healthy individuals and after dysphagic stroke. <i>Gastroenterology</i> , 2012 , 142, 29-38	13.3	62
455	Adaptation of surround inhibition in the human motor system. <i>Experimental Brain Research</i> , 2012 , 222, 211-7	2.3	11
454	Modulation of the disturbed motor network in dystonia by multisession suppression of premotor cortex. <i>PLoS ONE</i> , 2012 , 7, e47574	3.7	28
453	Early stages of motor skill learning and the specific relevance of the cortical motor systema combined behavioural training and lburst TMS study. <i>Restorative Neurology and Neuroscience</i> , 2012 , 30, 199-211	2.8	15
452	Prolonged motor skill learninga combined behavioural training and lburst TMS study. <i>Restorative Neurology and Neuroscience</i> , 2012 , 30, 213-24	2.8	10
451	Action reprogramming in Parkinson's disease: response to prediction error is modulated by levels of dopamine. <i>Journal of Neuroscience</i> , 2012 , 32, 542-50	6.6	33
450	Clinical applications of noninvasive electrical stimulation: problems and potential. <i>Clinical EEG and Neuroscience</i> , 2012 , 43, 209-14	2.3	27
449	Modulation of proprioceptive integration in the motor cortex shapes human motor learning. Journal of Neuroscience, 2012 , 32, 9000-6	6.6	62
448	Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. <i>Neurorehabilitation and Neural Repair</i> , 2012 , 26, 976-	8 4 7	98
447	Believing is perceiving: mismatch between self-report and actigraphy in psychogenic tremor. <i>Brain</i> , 2012 , 135, 117-23	11.2	102
446	The brighter side of music in dystonia. <i>Archives of Neurology</i> , 2012 , 69, 917-9		8
445	Physiological Basis of Transcranial Magnetic Stimulation. <i>Frontiers in Neuroscience</i> , 2012 , 41-54		
444	Val66Met in brain-derived neurotrophic factor affects stimulus-induced plasticity in the human pharyngeal motor cortex. <i>Gastroenterology</i> , 2011 , 141, 827-836.e1-3	13.3	30
443	The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> , 2011 , 122, 1011-8	4.3	151
442	A distinctive pattern of cortical excitability in patients with the syndrome of dystonia and cerebellar ataxia. <i>Clinical Neurophysiology</i> , 2011 , 122, 1816-9	4.3	10
441	Non-invasive magnetic stimulation of the human cerebellum facilitates cortico-bulbar projections in the swallowing motor system. <i>Neurogastroenterology and Motility</i> , 2011 , 23, 831-e341	4	42

440	Abnormal bidirectional plasticity-like effects in Parkinson's disease. <i>Brain</i> , 2011 , 134, 2312-20	11.2	91
439	The role of the cerebellum in 'real' and 'imaginary' line bisection explored with 1-Hz repetitive transcranial magnetic stimulation. <i>European Journal of Neuroscience</i> , 2011 , 33, 1724-32	3.5	8
438	Cortical oscillatory activity and the induction of plasticity in the human motor cortex. <i>European Journal of Neuroscience</i> , 2011 , 33, 1916-24	3.5	33
437	Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. <i>European Journal of Neuroscience</i> , 2011 , 34, 1839-46	3.5	58
436	Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. <i>Journal of Physiology</i> , 2011 , 589, 5845-55	3.9	250
435	Interactions between areas of the cortical grasping network. <i>Current Opinion in Neurobiology</i> , 2011 , 21, 565-70	7.6	142
434	Motor learning: spare the rod to benefit the child?. <i>Current Biology</i> , 2011 , 21, R287-8	6.3	
433	Speech facilitation by left inferior frontal cortex stimulation. <i>Current Biology</i> , 2011 , 21, 1403-7	6.3	239
432	Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. <i>Human Movement Science</i> , 2011 , 30, 906-15	2.4	53
431	Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. <i>Brain Stimulation</i> , 2011 , 4, 90-6	5.1	51
430	Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. <i>Experimental Brain Research</i> , 2011 , 209, 437-42	2.3	31
429	Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. <i>Experimental Brain Research</i> , 2011 , 212, 91-9	2.3	102
428	Milestones in clinical neurophysiology. <i>Movement Disorders</i> , 2011 , 26, 958-67	7	27
427	Botulinum toxin injections reduce associative plasticity in patients with primary dystonia. <i>Movement Disorders</i> , 2011 , 26, 1282-9	7	42
426	Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment. <i>Movement Disorders</i> , 2011 , 26, 1913-21	7	95
425	Moving toward "laboratory-supported" criteria for psychogenic tremor. <i>Movement Disorders</i> , 2011 , 26, 2509-15	7	110
424	The effect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. <i>Human Brain Mapping</i> , 2011 , 32, 872-82	5.9	43
423	Transcranial Magnetic Stimulation: Twenty Years of Stimulating the Human Motor Cortex in Health and Disease. <i>Biocybernetics and Biomedical Engineering</i> , 2011 , 31, 81-91	5.7	2

422	An urge to act or an urge to suppress?. Cognitive Neuroscience, 2011, 2, 250-1	1.7	4
421	Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms. <i>Brain</i> , 2011 , 134, 2106-15	11.2	93
420	The motor functions of the basal ganglia. <i>Journal of Integrative Neuroscience</i> , 2011 , 10, 303-15	1.5	15
419	Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. <i>Journal of Neurophysiology</i> , 2011 , 105, 1141-9	3.2	168
418	D2 receptor block abolishes © burst stimulation-induced neuroplasticity in the human motor cortex. Neuropsychopharmacology, 2011 , 36, 2097-102	8.7	38
417	Human lburst stimulation enhances subsequent motor learning and increases performance variability. <i>Cerebral Cortex</i> , 2011 , 21, 1627-38	5.1	69
416	Interference in ballistic motor learning: specificity and role of sensory error signals. <i>PLoS ONE</i> , 2011 , 6, e17451	3.7	31
415	Reversal of plasticity-like effects in the human motor cortex. <i>Journal of Physiology</i> , 2010 , 588, 3683-93	3.9	56
414	Endogenous control of waking brain rhythms induces neuroplasticity in humans. <i>European Journal of Neuroscience</i> , 2010 , 31, 770-8	3.5	119
413	Charting the excitability of premotor to motor connections while withholding or initiating a selected movement. <i>European Journal of Neuroscience</i> , 2010 , 32, 1771-9	3.5	45
412	Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions. <i>Journal of Neuroscience</i> , 2010 , 30, 9216-23	6.6	44
411	Information about the weight of grasped objects from vision and internal models interacts within the primary motor cortex. <i>Journal of Neuroscience</i> , 2010 , 30, 6984-90	6.6	57
410	Standardizing the intensity of upper limb treatment in rehabilitation medicine. <i>Clinical Rehabilitation</i> , 2010 , 24, 471-8	3.3	30
409	Abnormal motor cortex plasticity in premanifest and very early manifest Huntington disease. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2010 , 81, 267-70	5.5	71
408	Disrupting the experience of control in the human brain: pre-supplementary motor area contributes to the sense of agency. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2010 , 277, 2503-9	4.4	108
407	The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. <i>Journal of Neuroscience</i> , 2010 , 30, 11926-37	6.6	148
406	Reply: Plasticity and intracortical inhibition in dystoniamethodological reconsiderations. <i>Brain</i> , 2010 , 133, e147-e147	11.2	
405	The dynamic regulation of cortical excitability is altered in episodic ataxia type 2. <i>Brain</i> , 2010 , 133, 3519	9- 29 .2	11

(2010-2010)

404	The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. <i>Journal of Cognitive Neuroscience</i> , 2010 , 22, 427-36	3.1	43
403	Plasticity in the human motor system. Folia Phoniatrica Et Logopaedica, 2010, 62, 153-7	1.5	14
402	Reflex responses of masseter muscles to sound. <i>Clinical Neurophysiology</i> , 2010 , 121, 1690-9	4.3	18
401	Somatosensory evoked potentials and high frequency oscillations are differently modulated by theta burst stimulation over primary somatosensory cortex in humans. <i>Clinical Neurophysiology</i> , 2010 , 121, 2097-103	4.3	27
400	Low-frequency repetitive transcranial magnetic stimulation and off-phase motor symptoms in Parkinson's disease. <i>Journal of the Neurological Sciences</i> , 2010 , 291, 1-4	3.2	29
399	In vivo definition of parieto-motor connections involved in planning of grasping movements. <i>NeuroImage</i> , 2010 , 51, 300-12	7.9	106
398	Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions. <i>Gastroenterology</i> , 2010 , 138, 1737-46	13.3	136
397	Brain stimulation and brain repairrTMS: from animal experiment to clinical trialswhat do we know?. <i>Restorative Neurology and Neuroscience</i> , 2010 , 28, 387-98	2.8	27
396	Slow (1 Hz) repetitive transcranial magnetic stimulation (rTMS) induces a sustained change in cortical excitability in patients with Parkinson's disease. <i>Clinical Neurophysiology</i> , 2010 , 121, 1129-37	4.3	43
395	Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness. <i>Cognitive Neuroscience</i> , 2010 , 1, 165-75	1.7	229
394	Effectiveness of a community-based low intensity exercise programme for ambulatory stroke survivors. <i>Disability and Rehabilitation</i> , 2010 , 32, 239-47	2.4	30
393	Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. <i>Current Biology</i> , 2010 , 20, 176-81	6.3	128
392	Abnormal explicit but normal implicit sequence learning in premanifest and early Huntington's disease. <i>Movement Disorders</i> , 2010 , 25, 1343-9	7	21
391	Restoration of motor inhibition through an abnormal premotor-motor connection in dystonia. <i>Movement Disorders</i> , 2010 , 25, 696-703	7	57
390	Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystoniaan fMRI-TMS study. <i>Movement Disorders</i> , 2010 , 25, 76-83	7	34
389	Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson's disease: a clinical and electrophysiological study. <i>Movement Disorders</i> , 2010 , 25, 560-9	7	176
388	Mental rotation of body parts and sensory temporal discrimination in fixed dystonia. <i>Movement Disorders</i> , 2010 , 25, 1061-7	7	22
387	Contralateral versus ipsilateral rTMS of temporoparietal cortex for the treatment of chronic unilateral tinnitus: comparative study. <i>European Journal of Neurology</i> , 2010 , 17, 976-83	6	52

386	Plasticity in the Human Motor System. <i>Perspectives on Swallowing and Swallowing Disorders</i> (Dysphagia), 2010 , 19, 10-15		1
385	Theta Burst TMS 2010 , 229-231		
384	Regaining motor control in musician's dystonia by restoring sensorimotor organization. <i>Journal of Neuroscience</i> , 2009 , 29, 14627-36	6.6	66
383	Meet the brain neurophysiology. International Review of Neurobiology, 2009, 86, 51-65	4.4	4
382	Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex. <i>American Journal of Physiology - Renal Physiology</i> , 2009 , 297, G1035-40	5.1	51
381	Novel 'hunting' method using transcranial magnetic stimulation over parietal cortex disrupts visuospatial sensitivity in relation to motor thresholds. <i>Neuropsychologia</i> , 2009 , 47, 3152-61	3.2	20
380	Corticomotor responses to triple-pulse transcranial magnetic stimulation: Effects of interstimulus interval and stimulus intensity. <i>Brain Stimulation</i> , 2009 , 2, 36-40	5.1	8
379	Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimulation, 2009, 2, 58-	8 9 .1	239
378	Repetitive transcranial magnetic stimulation or transcranial direct current stimulation?. <i>Brain Stimulation</i> , 2009 , 2, 241-5	5.1	185
377	Repetitive transcranial magnetic stimulation for levodopa-induced dyskinesias in Parkinson's disease. <i>Movement Disorders</i> , 2009 , 24, 246-53	7	67
376	Sensory functions in dystonia: insights from behavioral studies. <i>Movement Disorders</i> , 2009 , 24, 1427-36	7	93
375	Differing effects of intracortical circuits on plasticity. Experimental Brain Research, 2009, 193, 555-63	2.3	41
374	TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. <i>Journal of Physiology</i> , 2009 , 587, 4281-92	3.9	51
373	Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. <i>Acta Neurologica Scandinavica</i> , 2009 , 119, 155-61	3.8	149
372	Perceptual encoding of self-motion duration in human posterior parietal cortex. <i>Annals of the New York Academy of Sciences</i> , 2009 , 1164, 236-8	6.5	12
371	One-year follow up of patients with chronic tinnitus treated with left temporoparietal rTMS. <i>European Journal of Neurology</i> , 2009 , 16, 404-8	6	57
370	How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. <i>Cortex</i> , 2009 , 45, 1035-42	3.8	220
369	Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. <i>Cortex</i> , 2009 , 45, 1050-7	3.8	127

368	Normal cortical excitability in Myoclonus-Dystoniaa TMS study. Experimental Neurology, 2009, 216, 30	00 5 57	27
367	TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. <i>Behavioural Brain Research</i> , 2009 , 202, 147-52	3.4	77
366	Mapping genetic influences on the corticospinal motor system in humans. <i>Neuroscience</i> , 2009 , 164, 150	5-639	35
365	Abnormal motor cortex excitability in preclinical and very early Huntington's disease. <i>Biological Psychiatry</i> , 2009 , 65, 959-65	7.9	92
364	Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex. <i>Clinical Neurophysiology</i> , 2009 , 120, 198-203	4.3	28
363	The effect of continuous theta burst stimulation over premotor cortex on circuits in primary motor cortex and spinal cord. <i>Clinical Neurophysiology</i> , 2009 , 120, 796-801	4.3	75
362	Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation. <i>Clinical Neurophysiology</i> , 2009 , 120, 820-6	4.3	46
361	Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. <i>Clinical Neurophysiology</i> , 2009 , 120, 1195-203	4.3	23
360	The facilitatory effects of intermittent theta burst stimulation on corticospinal excitability are enhanced by nicotine. <i>Clinical Neurophysiology</i> , 2009 , 120, 1610-5	4.3	21
359	Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at resta bifocal TMS study. <i>Clinical Neurophysiology</i> , 2009 , 120, 1724-31	4.3	73
358	A magnetic resonance spectroscopy study of brain glutamate in a model of plasticity in human pharyngeal motor cortex. <i>Gastroenterology</i> , 2009 , 136, 417-24	13.3	29
357	Reversal of a virtual lesion in human pharyngeal motor cortex by high frequency contralesional brain stimulation. <i>Gastroenterology</i> , 2009 , 137, 841-9, 849.e1	13.3	63
356	What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson's disease. <i>Experimental Neurology</i> , 2009 , 220, 283-92	5.7	54
355	Changes in cortical potential associated with modulation of peripheral sympathetic activity in patients with epilepsy. <i>Psychosomatic Medicine</i> , 2009 , 71, 84-92	3.7	25
354	Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. Journal of Neurophysiology, 2009 , 101, 2872-7	3.2	198
353	Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. <i>Journal of Physiology</i> , 2008 , 586, 325-51	3.9	409
352	Intracortical modulation of cortical-bulbar responses for the masseter muscle. <i>Journal of Physiology</i> , 2008 , 586, 3385-404	3.9	26
351	Theta burst stimulation induces after-effects on contralateral primary motor cortex excitability in humans. <i>Journal of Physiology</i> , 2008 , 586, 4489-500	3.9	112

350	Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. <i>Journal of Physiology</i> , 2008 , 586, 5147-59	3.9	119
349	A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. <i>Journal of Physiology</i> , 2008 , 586, 5717-25	3.9	481
348	Rapid rate magnetic stimulation of human sacral nerve roots alters excitability within the cortico-anal pathway. <i>Neurogastroenterology and Motility</i> , 2008 , 20, 1132-9	4	27
347	State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. <i>Brain Stimulation</i> , 2008 , 1, 151-63	5.1	284
346	Consensus: Motor cortex plasticity protocols. <i>Brain Stimulation</i> , 2008 , 1, 164-82	5.1	433
345	Consensus: "Can tDCS and TMS enhance motor learning and memory formation?". <i>Brain Stimulation</i> , 2008 , 1, 363-369	5.1	191
344	Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. <i>Brain Stimulation</i> , 2008 , 1, 370-82	5.1	107
343	Cost-effectiveness of transcranial magnetic stimulation vs. electroconvulsive therapy for severe depression: a multi-centre randomised controlled trial. <i>Journal of Affective Disorders</i> , 2008 , 109, 273-85	6.6	34
342	Influence of uncertainty and surprise on human corticospinal excitability during preparation for action. <i>Current Biology</i> , 2008 , 18, 775-780	6.3	102
341	Clinical applications of transcranial magnetic stimulation in patients with movement disorders. <i>Lancet Neurology, The</i> , 2008 , 7, 827-40	24.1	108
340	Corticospinal system excitability at rest is associated with tic severity in tourette syndrome. <i>Biological Psychiatry</i> , 2008 , 64, 248-51	7.9	71
339	How repeatable are the physiological effects of TENS?. Clinical Neurophysiology, 2008, 119, 1834-1839	4.3	20
338	Cortical excitability and transcallosal inhibition in chronic tinnitus: transcranial magnetic study. <i>Neurophysiologie Clinique</i> , 2008 , 38, 243-8	2.7	11
337	Posterior parietal rTMS disrupts human Path Integration during a vestibular navigation task. <i>Neuroscience Letters</i> , 2008 , 437, 88-92	3.3	39
336	Neural correlates of age-related changes in cortical neurophysiology. <i>NeuroImage</i> , 2008 , 40, 1772-81	7.9	120
335	'Noisy patients'can signal detection theory help?. <i>Nature Clinical Practice Neurology</i> , 2008 , 4, 306-16		3
334	Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. <i>Cerebral Cortex</i> , 2008 , 18, 1281-91	5.1	147
333	Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. <i>Cerebral Cortex</i> , 2008 , 18, 1909-22	5.1	208

(2008-2008)

332	Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. <i>Journal of Neuroscience</i> , 2008 , 28, 5944-53	6.6	109
331	Trial-by-trial fluctuations in the event-related electroencephalogram reflect dynamic changes in the degree of surprise. <i>Journal of Neuroscience</i> , 2008 , 28, 12539-45	6.6	168
330	Lateropulsion, pushing and verticality perception in hemisphere stroke: a causal relationship?. <i>Brain</i> , 2008 , 131, 2401-13	11.2	247
329	Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. <i>Cerebral Cortex</i> , 2008 , 18, 563-70	5.1	238
328	Informing dose-finding studies of repetitive transcranial magnetic stimulation to enhance motor function: a qualitative systematic review. <i>Neurorehabilitation and Neural Repair</i> , 2008 , 22, 228-49	4.7	37
327	Cortical processing in vestibular navigation. <i>Progress in Brain Research</i> , 2008 , 171, 339-46	2.9	8
326	Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. <i>Brain</i> , 2008 , 131, 3147-55	11.2	171
325	Vibrotactileauditory interactions are post-perceptual. <i>Perception</i> , 2008 , 37, 1114-30	1.2	14
324	Corticospinal facilitation following prolonged proprioceptive stimulation by means of passive wrist movement. <i>Journal of Clinical Neurophysiology</i> , 2008 , 25, 202-9	2.2	23
323	Preconditioning repetitive transcranial magnetic stimulation of premotor cortex can reduce but not enhance short-term facilitation of primary motor cortex. <i>Journal of Neurophysiology</i> , 2008 , 99, 564-	7ð ^{.2}	33
322	The effect of age on task-related modulation of interhemispheric balance. <i>Experimental Brain Research</i> , 2008 , 186, 59-66	2.3	133
321	Differential effect of linguistic and non-linguistic pen-holding tasks on motor cortex excitability. Experimental Brain Research, 2008, 191, 237-46	2.3	4
320	Mapping causal interregional influences with concurrent TMS-fMRI. <i>Experimental Brain Research</i> , 2008 , 191, 383-402	2.3	159
319	Cortical excitability is abnormal in patients with the "fixed dystonia" syndrome. <i>Movement Disorders</i> , 2008 , 23, 646-52	7	91
318	Cortical evoked potentials from pallidal stimulation in patients with primary generalized dystonia. <i>Movement Disorders</i> , 2008 , 23, 265-73	7	20
317	Prolonged cortical silent period but normal sensorimotor plasticity in spinocerebellar ataxia 6. <i>Movement Disorders</i> , 2008 , 23, 378-85	7	17
316	Altered dorsal premotor-motor interhemispheric pathway activity in focal arm dystonia. <i>Movement Disorders</i> , 2008 , 23, 660-8	7	41
315	Motor cortical physiology in patients and asymptomatic carriers of parkin gene mutations. Movement Disorders, 2008, 23, 1812-9	7	25

314	Theta Burst Stimulation 2007 , 187-203		3
313	Bidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study. <i>Investigative Ophthalmology and Visual Science</i> , 2007 , 48, 5782-7		55
312	Abnormal plasticity of the sensorimotor cortex to slow repetitive transcranial magnetic stimulation in patients with writer's cramp. <i>Movement Disorders</i> , 2007 , 22, 81-90	7	51
311	Dopamine levels after repetitive transcranial magnetic stimulation of motor cortex in patients with Parkinson's disease: preliminary results. <i>Movement Disorders</i> , 2007 , 22, 1046-50	7	45
310	Decreased cortical inhibition and yet cerebellar pathology in 'familial cortical myoclonic tremor with epilepsy'. <i>Movement Disorders</i> , 2007 , 22, 2378-85	7	43
309	Origin of sound-evoked EMG responses in human masseter muscles. <i>Journal of Physiology</i> , 2007 , 580, 195-209	3.9	22
308	Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. <i>Journal of Physiology</i> , 2007 , 578, 551-62	3.9	84
307	Intracortical circuits modulate transcallosal inhibition in humans. <i>Journal of Physiology</i> , 2007 , 583, 99-11	4 .9	71
306	Corticospinal involvement in volitional contractions. <i>Journal of Physiology</i> , 2007 , 584, 363	3.9	5
305	Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. <i>Journal of Physiology</i> , 2007 , 585, 525-38	3.9	97
304	Therapeutic use of rTMS. <i>Nature Reviews Neuroscience</i> , 2007 , 8, 808-808	13.5	6
303	Is there a future for therapeutic use of transcranial magnetic stimulation?. <i>Nature Reviews Neuroscience</i> , 2007 , 8, 559-67	13.5	486
302	The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. <i>European Journal of Neuroscience</i> , 2007 , 25, 1865-73	3.5	123
301	Lack of post-exercise depression of corticospinal excitability in patients with Parkinson's disease. <i>European Journal of Neurology</i> , 2007 , 14, 793-6	6	16
300	An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex. <i>Neuropsychologia</i> , 2007 , 45, 2712-7	3.2	44
299	Effects of STN DBS on memory guided force control in Parkinson's disease (June 2007). <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2007 , 15, 155-65	4.8	4
298	The physiological effects of pallidal deep brain stimulation in dystonia. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2007 , 15, 166-72	4.8	50
297	Effects of motor preparation and spatial attention on corticospinal excitability in a delayed-response paradigm. <i>Experimental Brain Research</i> , 2007 , 182, 125-9	2.3	61

(2007-2007)

296	Effects of rTMS conditioning over the fronto-parietal network on motor versus visual attention. Journal of Cognitive Neuroscience, 2007 , 19, 513-24	3.1	43
295	Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. <i>Journal of Neuroscience</i> , 2007 , 27, 6815-22	6.6	183
294	Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. <i>Journal of Neuroscience</i> , 2007 , 27, 5200-6	6.6	186
293	A randomized, controlled trial with 6-month follow-up of repetitive transcranial magnetic stimulation and electroconvulsive therapy for severe depression. <i>American Journal of Psychiatry</i> , 2007 , 164, 73-81	11.9	136
292	Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia. <i>Experimental Neurology</i> , 2007 , 206, 80-5	5.7	69
291	Defective temporal discrimination of passive movements in Parkinson's disease. <i>Neuroscience Letters</i> , 2007 , 417, 312-5	3.3	25
290	Modulation of motor cortical excitability following rapid-rate transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> , 2007 , 118, 140-5	4.3	35
289	Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. <i>Clinical Neurophysiology</i> , 2007 , 118, 333-42	4.3	198
288	The after-effect of human theta burst stimulation is NMDA receptor dependent. <i>Clinical Neurophysiology</i> , 2007 , 118, 1028-32	4.3	379
287	Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. <i>Clinical Neurophysiology</i> , 2007 , 118, 1033-43	4.3	106
286	Direct demonstration of the effects of repetitive paired-pulse transcranial magnetic stimulation at I-wave periodicity. <i>Clinical Neurophysiology</i> , 2007 , 118, 1193-7	4.3	37
285	Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation. <i>Clinical Neurophysiology</i> , 2007 , 118, 1649-51	4.3	74
284	Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation. <i>Clinical Neurophysiology</i> , 2007 , 118, 1815-23	4.3	48
283	Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> , 2007 , 118, 2120-2	4.3	51
282	Modulation of somatosensory evoked potentials using transcranial magnetic intermittent theta burst stimulation. <i>Clinical Neurophysiology</i> , 2007 , 118, 2506-11	4.3	39
281	Transcranial magnetic stimulation as a method for investigating the plasticity of the brain in Parkinson's disease and dystonia. <i>Parkinsonism and Related Disorders</i> , 2007 , 13 Suppl 3, S417-20	3.6	18
280	Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. <i>Journal of Neuroscience</i> , 2007 , 27, 12058-66	6.6	228
279	Role of the cerebellum in externally paced rhythmic finger movements. <i>Journal of Neurophysiology</i> , 2007 , 98, 145-52	3.2	132

278	Spatial attention affects sensorimotor reorganisation in human motor cortex. <i>Experimental Brain Research</i> , 2006 , 170, 97-108	2.3	28
277	Age reduces cortical reciprocal inhibition in humans. <i>Experimental Brain Research</i> , 2006 , 171, 322-9	2.3	70
276	Effects of paired pulse TMS of primary somatosensory cortex on perception of a peripheral electrical stimulus. <i>Experimental Brain Research</i> , 2006 , 172, 416-24	2.3	39
275	Spatial consequences of bridging the saccadic gap. <i>Vision Research</i> , 2006 , 46, 545-55	2.1	4
274	Alteration of central motor excitability in a patient with hemimasticatory spasm after treatment with botulinum toxin injections. <i>Movement Disorders</i> , 2006 , 21, 73-8	7	31
273	Sensory timing cues improve akinesia of grasping movements in Parkinson's disease: a comparison to the effects of subthalamic nucleus stimulation. <i>Movement Disorders</i> , 2006 , 21, 166-72	7	27
272	Temporal discrimination of two passive movements in writer's cramp. <i>Movement Disorders</i> , 2006 , 21, 1131-5	7	24
271	Changes in blink reflex excitability after globus pallidus internus stimulation for dystonia. <i>Movement Disorders</i> , 2006 , 21, 1650-5	7	37
270	Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson's disease. <i>Movement Disorders</i> , 2006 , 21, 2201-5	7	130
269	Abnormalities in motor cortical plasticity differentiate manifesting and nonmanifesting DYT1 carriers. <i>Movement Disorders</i> , 2006 , 21, 2181-6	7	116
268	Direct demonstration that repetitive transcranial magnetic stimulation can enhance corticospinal excitability in stroke. <i>Stroke</i> , 2006 , 37, 2850-3	6.7	35
267	Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli. <i>American Journal of Physiology - Renal Physiology</i> , 2006 , 291, G666-71	5.1	40
266	Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. <i>Journal of Neuroscience</i> , 2006 , 26, 9629-38	6.6	58
265	Enhanced long-term potentiation-like plasticity of the trigeminal blink reflex circuit in blepharospasm. <i>Journal of Neuroscience</i> , 2006 , 26, 716-21	6.6	81
264	Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. <i>Journal of Neuroscience</i> , 2006 , 26, 7452-9	6.6	177
263	Motor system activation after subcortical stroke depends on corticospinal system integrity. <i>Brain</i> , 2006 , 129, 809-19	11.2	317
262	Low intensity strength training for ambulatory stroke patients. <i>Disability and Rehabilitation</i> , 2006 , 28, 883-9	2.4	30
261	Effect of repetitive transcranial magnetic stimulation applied over the premotor cortex on somatosensory-evoked potentials and regional cerebral blood flow. <i>NeuroImage</i> , 2006 , 31, 699-709	7.9	29

(2006-2006)

260	Aging is associated with contrasting changes in local and distant cortical connectivity in the human motor system. <i>NeuroImage</i> , 2006 , 32, 747-60	7.9	75
259	Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand. <i>Clinical Neurophysiology</i> , 2006 , 117, 855-63	4.3	46
258	Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks. <i>Clinical Neurophysiology</i> , 2006 , 117, 864-70	4.3	66
257	Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. <i>Clinical Neurophysiology</i> , 2006 , 117, 1641-59	4.3	207
256	Effects of theta burst stimulation protocols on phosphene threshold. <i>Clinical Neurophysiology</i> , 2006 , 117, 1808-13	4.3	75
255	Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability. <i>Clinical Neurophysiology</i> , 2006 , 117, 2292-301	4.3	95
254	The startle reflex, voluntary movement, and the reticulospinal tract. <i>Supplements To Clinical Neurophysiology</i> , 2006 , 58, 223-31		47
253	Task-specific hand dystonia: can too much plasticity be bad for you?. <i>Trends in Neurosciences</i> , 2006 , 29, 192-9	13.3	267
252	Reduction of intracortical inhibition in soleus muscle during postural activity. <i>Journal of Neurophysiology</i> , 2006 , 96, 1711-7	3.2	58
251	Trigemino-cervical reflexes: clinical applications and neuroradiological correlations. <i>Supplements To Clinical Neurophysiology</i> , 2006 , 58, 110-9		13
250	Does brain stimulation after stroke have a future?. Current Opinion in Neurology, 2006, 19, 543-50	7.1	76
249	Associative plasticity in human motor cortex during voluntary muscle contraction. <i>Journal of Neurophysiology</i> , 2006 , 96, 1337-46	3.2	91
248	Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans. <i>Journal of Neurophysiology</i> , 2006 , 96, 1765-71	3.2	161
247	Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. <i>European Journal of Neuroscience</i> , 2006 , 23, 822-9	3.5	85
246	No evidence for a substantial involvement of primary motor hand area in handedness judgements: a transcranial magnetic stimulation study. <i>European Journal of Neuroscience</i> , 2006 , 23, 2215-24	3.5	37
245	Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways. <i>Journal of Physiology</i> , 2006 , 572, 857-68	3.9	125
244	Influence of ipsilateral transcranial magnetic stimulation on the triphasic EMG pattern accompanying fast ballistic movements in humans. <i>Journal of Physiology</i> , 2006 , 574, 917-28	3.9	19
243	Biases in the perceived timing of perisaccadic perceptual and motor events. <i>Perception & Psychophysics</i> , 2006 , 68, 1217-26		11

242	Pathophysiological differences between musician's dystonia and writer's cramp. <i>Brain</i> , 2005 , 128, 918-3	111.2	160
241	Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. <i>Brain</i> , 2005 , 128, 1943-50	11.2	175
240	Caffeine has no effect on measures of cortical excitability. Clinical Neurophysiology, 2005, 116, 308-14	4.3	30
239	Subthreshold rTMS over pre-motor cortex has no effect on tics in patients with Gilles de la Tourette syndrome. <i>Clinical Neurophysiology</i> , 2005 , 116, 764-8	4.3	61
238	Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. <i>NeuroImage</i> , 2005 , 26, 164-76	7.9	109
237	BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. <i>NeuroImage</i> , 2005 , 28, 22-9	7.9	204
236	Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. <i>Neurology</i> , 2005 , 65, 466-8	6.5	385
235	The beneficial effects of subthalamic nucleus stimulation on manipulative finger force control in Parkinson's disease. <i>Experimental Neurology</i> , 2005 , 193, 427-36	5.7	21
234	Theta burst stimulation of the human motor cortex. <i>Neuron</i> , 2005 , 45, 201-6	13.9	2414
233	Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer's cramp. <i>Brain</i> , 2005 , 128, 104-15	11.2	177
232	Abnormal cortical and spinal inhibition in paroxysmal kinesigenic dyskinesia. <i>Brain</i> , 2005 , 128, 291-9	11.2	36
231	Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease. <i>European Journal of Neuroscience</i> , 2005 , 21, 1394-402	3.5	63
230	How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?. <i>European Journal of Neuroscience</i> , 2005 , 22, 495-504	3.5	585
229	High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor cortex disturbs predictive grip force scaling. <i>European Journal of Neuroscience</i> , 2005 , 22, 2392-6	3.5	40
228	Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area. <i>Journal of Physiology</i> , 2005 , 562, 295-306	3.9	86
227	Role of afferent input in motor organization in health and disease. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2005 , 24, 40-4		9
226	Grip force behavior in Gilles de la Tourette syndrome. <i>Movement Disorders</i> , 2005 , 20, 217-23	7	37
225	The role of dorsal premotor area in reaction task: comparing the "virtual lesion" effect of paired pulse or theta burst transcranial magnetic stimulation. <i>Experimental Brain Research</i> , 2005 , 167, 414-21	2.3	63

(2004-2005)

224	Temporal discrimination of two passive movements in humans: a new psychophysical approach to assessing kinaesthesia. <i>Experimental Brain Research</i> , 2005 , 166, 184-9	2.3	13
223	Transcranial Electrical and Magnetic Stimulation of the Brain: Basic Physiological Mechanisms 2005 , 43	-60	5
222	Excitability of motor cortex inhibitory circuits in Tourette syndrome before and after single dose nicotine. <i>Brain</i> , 2005 , 128, 1292-300	11.2	99
221	A sound-evoked vestibulomasseteric reflex in healthy humans. <i>Journal of Neurophysiology</i> , 2005 , 93, 2739-51	3.2	37
220	Consistent chronostasis effects across saccade categories imply a subcortical efferent trigger. Journal of Cognitive Neuroscience, 2004 , 16, 839-47	3.1	54
219	Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. <i>European Journal of Neuroscience</i> , 2004 , 19, 1950-62	3.5	334
218	Shaping the excitability of human motor cortex with premotor rTMS. <i>Journal of Physiology</i> , 2004 , 554, 483-95	3.9	122
217	Relaxation from a voluntary contraction is preceded by increased excitability of motor cortical inhibitory circuits. <i>Journal of Physiology</i> , 2004 , 558, 685-95	3.9	76
216	The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. <i>Journal of Physiology</i> , 2004 , 561, 307-20	3.9	109
215	Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex. <i>Journal of Physiology</i> , 2004 , 561, 331-8	3.9	164
214	Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. <i>Current Biology</i> , 2004 , 14, 252-6	6.3	110
213	Changes in corticospinal motor excitability induced by non-motor linguistic tasks. <i>Experimental Brain Research</i> , 2004 , 154, 218-25	2.3	18
212	Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. <i>Experimental Brain Research</i> , 2004 , 156, 439-43	2.3	226
211	Memory for fingertip forces: passive hand muscle vibration interferes with predictive grip force scaling. <i>Experimental Brain Research</i> , 2004 , 156, 444-50	2.3	22
210	Inter-hemispheric asymmetry of ipsilateral corticofugal projections to proximal muscles in humans. <i>Experimental Brain Research</i> , 2004 , 157, 225-33	2.3	21
209	The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. <i>Experimental Brain Research</i> , 2004 , 158, 366-72	2.3	93
208	One-Hz repetitive transcranial magnetic stimulation of the premotor cortex alters reciprocal inhibition in DYT1 dystonia. <i>Movement Disorders</i> , 2004 , 19, 54-9	7	46
207	Identification of psychogenic, dystonic, and other organic tremors by a coherence entrainment test. <i>Movement Disorders</i> , 2004 , 19, 253-67	7	74

206	Natural history and syndromic associations of orthostatic tremor: a review of 41 patients. <i>Movement Disorders</i> , 2004 , 19, 788-795	7	130
205	Action, arousal, and subjective time. <i>Consciousness and Cognition</i> , 2004 , 13, 373-90	2.6	21
204	Motor control 2004 , 3-19		1
203	Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy. <i>Clinical Neurophysiology</i> , 2004 , 115, 112-5	4.3	19
202	Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. <i>Clinical Neurophysiology</i> , 2004 , 115, 456-60	4.3	150
2 01	Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. <i>Biological Psychiatry</i> , 2004 , 56, 634-9	7.9	257
200	Short-term high-frequency transcutaneous electrical nerve stimulation decreases human motor cortex excitability. <i>Neuroscience Letters</i> , 2004 , 355, 85-8	3.3	64
199	Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. <i>Journal of Neuroscience</i> , 2004 , 24, 3379-85	6.6	575
198	Effects of low frequency and low intensity repetitive paired pulse stimulation of the primary motor cortex. <i>Clinical Neurophysiology</i> , 2004 , 115, 1259-63	4.3	36
197	The physiological basis of transcranial motor cortex stimulation in conscious humans. <i>Clinical Neurophysiology</i> , 2004 , 115, 255-66	4.3	426
196	Inhibitory interactions between pairs of subthreshold conditioning stimuli in the human motor cortex. <i>Clinical Neurophysiology</i> , 2004 , 115, 755-64	4.3	15
195	Comparison of descending volleys evoked by transcranial and epidural motor cortex stimulation in a conscious patient with bulbar pain. <i>Clinical Neurophysiology</i> , 2004 , 115, 834-8	4.3	37
194	Induction of long-term plasticity in human swallowing motor cortex following repetitive cortical stimulation. <i>Clinical Neurophysiology</i> , 2004 , 115, 1044-51	4.3	100
193	The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. <i>Clinical Neurophysiology</i> , 2004 , 115, 1076-82	4.3	188
192	The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. <i>Clinical Neurophysiology</i> , 2004 , 115, 1069-75	4.3	120
191	The after effects of motor cortex rTMS depend on the state of contraction when rTMS is applied. <i>Clinical Neurophysiology</i> , 2004 , 115, 1514-8	4.3	32
190	Motor unit excitability changes mediating vestibulocollic reflexes in the sternocleidomastoid muscle. <i>Clinical Neurophysiology</i> , 2004 , 115, 2567-73	4.3	124
189	A message from the Editors. <i>Brain</i> , 2004 , 127, 1-1	11.2	31

188	Modulation of cortical activity by repetitive transcranial magnetic stimulation (rTMS): a review of functional imaging studies and the potential use in dystonia. <i>Advances in Neurology</i> , 2004 , 94, 45-52		6
187	Short-lasting impairment of tactile perception by 0.9Hz-rTMS of the sensorimotor cortex. <i>Neurology</i> , 2003 , 60, 1045-7	6.5	43
186	Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. <i>Brain</i> , 2003 , 126, 2710-25	11.2	161
185	Functional connectivity of the human premotor and motor cortex explored with TMS. <i>Supplements To Clinical Neurophysiology</i> , 2003 , 56, 160-9		6
184	Pallidotomy and incidental sequence learning in Parkinson's disease. <i>NeuroReport</i> , 2003 , 14, 21-4	1.7	27
183	Chapter 26 Diseases and treatments: Parkinson's disease. <i>Handbook of Clinical Neurophysiology</i> , 2003 , 1, 417-435		
182	Chapter 43 Research studies in normal subjects and patients: current and future. <i>Handbook of Clinical Neurophysiology</i> , 2003 , 1, 717-723		
181	Is functional magnetic resonance imaging capable of mapping transcranial magnetic cortex stimulation?. <i>Supplements To Clinical Neurophysiology</i> , 2003 , 56, 55-62		4
180	Differential changes in human pharyngoesophageal motor excitability induced by swallowing, pharyngeal stimulation, and anesthesia. <i>American Journal of Physiology - Renal Physiology</i> , 2003 , 285, G137-44	5.1	63
179	Techniques of transcranial magnetic stimulation 2003 , 26-61		15
178	Therapeutic uses of rTMS 2003 , 246-263		1
177	Transcranial magnetic stimulation: new insights into representational cortical plasticity. <i>Experimental Brain Research</i> , 2003 , 148, 1-16	2.3	574
176	Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task. <i>Experimental Brain Research</i> , 2003 , 151, 60-71	2.3	51
175	High-frequency transcranial magnetic stimulation of the supplementary motor area reduces bimanual coupling during anti-phase but not in-phase movements. <i>Experimental Brain Research</i> , 2003 , 151, 309-17	2.3	50
174	Manual chronostasis: tactile perception precedes physical contact. Current Biology, 2003, 13, 1134-9	6.3	50
173	The ipsilateral human motor cortex can functionally compensate for acute contralateral motor cortex dysfunction. <i>Current Biology</i> , 2003 , 13, 1201-5	6.3	68
172	Systems-level studies of movement disorders in dystonia and Parkinson's disease. <i>Current Opinion in Neurobiology</i> , 2003 , 13, 691-5	7.6	26
171	Differential effect of muscle vibration on intracortical inhibitory circuits in humans. <i>Journal of Physiology</i> , 2003 , 551, 649-60	3.9	161

170	Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex. <i>Journal of Physiology</i> , 2003 , 551, 563-73	3.9	133
169	A short latency vestibulomasseteric reflex evoked by electrical stimulation over the mastoid in healthy humans. <i>Journal of Physiology</i> , 2003 , 553, 267-79	3.9	32
168	Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. <i>Clinical Neurophysiology</i> , 2003 , 114, 600-4	4.3	545
167	Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception. <i>Clinical Neurophysiology</i> , 2003 , 114, 860-6	4.3	72
166	Slow frequency repetitive transcranial magnetic stimulation affects reaction times, but not priming effects, in a masked prime task. <i>Clinical Neurophysiology</i> , 2003 , 114, 1272-7	4.3	49
165	The variability of intracortical inhibition and facilitation. Clinical Neurophysiology, 2003, 114, 2362-9	4.3	162
164	Repeated premotor rTMS leads to cumulative plastic changes of motor cortex excitability in humans. <i>NeuroImage</i> , 2003 , 20, 550-60	7.9	120
163	Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. <i>NeuroImage</i> , 2003 , 20, 1685-96	7.9	191
162	Different patterns of electrophysiological deficits in manifesting and non-manifesting carriers of the DYT1 gene mutation. <i>Brain</i> , 2003 , 126, 2074-80	11.2	118
161	Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. <i>Journal of Neuroscience</i> , 2003 , 23, 5308-18	6.6	229
160	Patterns of excitability in human esophageal sensorimotor cortex to painful and nonpainful visceral stimulation. <i>American Journal of Physiology - Renal Physiology</i> , 2002 , 282, G332-7	5.1	4
159	Role of brainstem-spinal projections in voluntary movement. <i>Movement Disorders</i> , 2002 , 17 Suppl 2, S27	·- 9	28
158	Bilaterally coherent tremor resembling enhanced physiological tremor: report of three cases. <i>Movement Disorders</i> , 2002 , 17, 387-91	7	13
157	Neurophysiological investigations in patients with primary writing tremor. <i>Movement Disorders</i> , 2002 , 17, 1336-40	7	43
156	Intracortical inhibition is reduced in a patient with a lesion in the posterolateral thalamus. <i>Movement Disorders</i> , 2002 , 17, 208-12	7	12
155	Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. <i>Experimental Brain Research</i> , 2002 , 143, 240-8	2.3	298
154	Direct demonstration of the effects of repetitive transcranial magnetic stimulation on the excitability of the human motor cortex. <i>Experimental Brain Research</i> , 2002 , 144, 549-53	2.3	91
153	Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation. <i>Experimental Brain Research</i> , 2002 , 147, 108-13	2.3	102

(2001-2002)

152	Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy. <i>Epilepsia</i> , 2002 , 43, 491-5	6.4	108
151	Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. <i>Journal of Physiology</i> , 2002 , 540, 367-76	3.9	79
150	Corticospinal transmission to leg motoneurones in human subjects with deficient glycinergic inhibition. <i>Journal of Physiology</i> , 2002 , 544, 631-40	3.9	11
149	Repetitive transcranial magnetic stimulation for Tourette syndrome. <i>Neurology</i> , 2002 , 59, 1789-91	6.5	93
148	Striatal contribution to cognition: working memory and executive function in Parkinson's disease before and after unilateral posteroventral pallidotomy. <i>Journal of Cognitive Neuroscience</i> , 2002 , 14, 298	3- 3 :70	39
147	Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. <i>Clinical Neurophysiology</i> , 2002 , 113, 114-9	4.3	49
146	The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. <i>Clinical Neurophysiology</i> , 2002 , 113, 1279-85	4.3	89
145	rTMS over the cerebellum can increase corticospinal excitability through a spinal mechanism involving activation of peripheral nerve fibres. <i>Clinical Neurophysiology</i> , 2002 , 113, 1435-40	4.3	51
144	Direct demonstration of long latency cortico-cortical inhibition in normal subjects and in a patient with vascular parkinsonism. <i>Clinical Neurophysiology</i> , 2002 , 113, 1673-9	4.3	85
143	Parietal magnetic stimulation delays visuomotor mental rotation at increased processing demands. <i>NeuroImage</i> , 2002 , 17, 1512-20	7.9	50
142	Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. <i>Neuron</i> , 2002 , 34, 831-40	13.9	314
141	Connections to motor cortex from other areas of the brain studied with transcranial magnetic stimulation. <i>International Congress Series</i> , 2002 , 1226, 45-52		
140	The contribution of C. David Marsden to the study and treatment of myoclonus. <i>Advances in Neurology</i> , 2002 , 89, 1-12		3
139	Pathophysiology of spinal myoclonus. <i>Advances in Neurology</i> , 2002 , 89, 137-44		20
138	Spinal interneurones: re-evaluation and controversy. <i>Advances in Experimental Medicine and Biology</i> , 2002 , 508, 259-63	3.6	1
137	The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. <i>Experimental Brain Research</i> , 2001 , 138, 268-73	2.3	175
136	Motor cortex excitability following short trains of repetitive magnetic stimuli. <i>Experimental Brain Research</i> , 2001 , 140, 453-9	2.3	102
135	Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans. <i>Experimental Brain Research</i> , 2001 , 141, 121-7	2.3	106

134	Spontaneously changing muscular activation pattern in patients with cervical dystonia. <i>Movement Disorders</i> , 2001 , 16, 1091-7	7	21
133	Transcranial magnetic stimulation of medial-frontal cortex impairs the processing of angry facial expressions. <i>Nature Neuroscience</i> , 2001 , 4, 17-8	25.5	134
132	Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. <i>Nature</i> , 2001 , 414, 302-5	50.4	172
131	Left posterior BA37 is involved in object recognition: a TMS study. <i>Neuropsychologia</i> , 2001 , 39, 1-6	3.2	68
130	Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. <i>Neuropsychologia</i> , 2001 , 39, 415-9	3.2	248
129	Polymyography combined with time-locked video recording (video EMG) for presurgical assessment of patients with cervical dystonia. <i>European Neurology</i> , 2001 , 45, 222-8	2.1	8
128	Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex. <i>Journal of Cognitive Neuroscience</i> , 2001 , 13, 1097-108	3.1	99
127	Uncoupling of contingent negative variation and alpha band event-related desynchronization in a go/no-go task. <i>Clinical Neurophysiology</i> , 2001 , 112, 1307-15	4.3	63
126	Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?. <i>Clinical Neurophysiology</i> , 2001 , 112, 2138-45	4.3	275
125	TMS produces two dissociable types of speech disruption. <i>NeuroImage</i> , 2001 , 13, 472-8	7.9	68
124	Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. <i>NeuroImage</i> , 2001 , 14, 1444-53	7.9	197
123	Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. <i>Neurology</i> , 2001 , 57, 449-55	6.5	278
122	Myoclonus and epilepsy 2001 , 165-210		
121	Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke*. <i>Clinical Science</i> , 2000 , 99, 151-157	6.5	89
120	Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke*. <i>Clinical Science</i> , 2000 , 99, 151	6.5	42
119	Electromyographic quantification of the paralysing effect of botulinum toxin in the sternocleidomastoid muscle. <i>European Neurology</i> , 2000 , 43, 13-6	2.1	81
118	Firing patterns of pallidal cells in parkinsonian patients correlate with their pre-pallidotomy clinical scores. <i>NeuroReport</i> , 2000 , 11, 3413-8	1.7	20
117	I-waves in motor cortex. Journal of Clinical Neurophysiology, 2000, 17, 397-405	2.2	192

(1999-2000)

116	Time-varying changes in corticospinal excitability accompanying the triphasic EMG pattern in humans. <i>Journal of Physiology</i> , 2000 , 528, 633-45	3.9	85
115	Transcranial magnetic stimulation in cognitive neurosciencevirtual lesion, chronometry, and functional connectivity. <i>Current Opinion in Neurobiology</i> , 2000 , 10, 232-7	7.6	683
114	Cortical potentials related to the nogo decision. Experimental Brain Research, 2000, 132, 411-5	2.3	52
113	Long-term changes of GABAergic function in the sensorimotor cortex of amputees. A combined magnetic stimulation and 11C-flumazenil PET study. <i>Experimental Brain Research</i> , 2000 , 133, 552-6	2.3	22
112	Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials. <i>Experimental Brain Research</i> , 2000 , 135, 231-40	2.3	28
111	Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. <i>Experimental Brain Research</i> , 2000 , 135, 455-61	2.3	289
110	Transcranial magnetic stimulation studies of cognition: an emerging field. <i>Experimental Brain Research</i> , 2000 , 131, 1-9	2.3	151
109	What do reflex and voluntary mean? Modern views on an ancient debate. <i>Experimental Brain Research</i> , 2000 , 130, 417-32	2.3	115
108	The sternocleidomastoid test: an in vivo assay to investigate botulinum toxin antibody formation in humans. <i>Journal of Neurology</i> , 2000 , 247, 630-2	5.5	31
107	Phase relationships between cortical and muscle oscillations in cortical myoclonus: electrocorticographic assessment in a single case. <i>Clinical Neurophysiology</i> , 2000 , 111, 2170-4	4.3	16
106	Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. <i>Clinical Neurophysiology</i> , 2000 , 111, 794-9	4.3	344
105	Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. <i>Journal of Neurophysiology</i> , 1999 , 81, 1917-26	3.2	291
104	Patterned ballistic movements triggered by a startle in healthy humans. <i>Journal of Physiology</i> , 1999 , 516 (Pt 3), 931-8	3.9	267
103	Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. <i>Experimental Brain Research</i> , 1999 , 124, 520-4	2.3	227
102	Effects of voluntary contraction on descending volleys evoked by transcranial electrical stimulation over the motor cortex hand area in conscious humans. <i>Experimental Brain Research</i> , 1999 , 124, 525-8	2.3	53
101	Dynamic changes in corticospinal excitability during motor imagery. <i>Experimental Brain Research</i> , 1999 , 125, 75-81	2.3	199
100	Afferent input and cortical organisation: a study with magnetic stimulation. <i>Experimental Brain Research</i> , 1999 , 126, 536-44	2.3	122
99	Human handedness and asymmetry of the motor cortical silent period. <i>Experimental Brain Research</i> , 1999 , 128, 390-6	2.3	85

98	Human anticipatory eye movements may reflect rhythmic central nervous activity. <i>Neuroscience</i> , 1999 , 94, 339-50	3.9	26
97	C. David Marsden (1938¶998). <i>Trends in Neurosciences</i> , 1999 , 22, 1	13.3	3
96	On the focal nature of inhibition and facilitation in the human motor cortex. <i>Clinical Neurophysiology</i> , 1999 , 110, 550-5	4.3	39
95	Pre-movement gating of short-latency somatosensory evoked potentials. <i>NeuroReport</i> , 1999 , 10, 2457	-6 0 .7	52
94	Cortical potentials related to decision-making: comparison of two types of go/no-go decision. <i>NeuroReport</i> , 1999 , 10, 3583-7	1.7	26
93	Long-term reorganization of human motor cortex driven by short-term sensory stimulation. <i>Nature Neuroscience</i> , 1998 , 1, 64-8	25.5	359
92	Sensorimotor modulation of human cortical swallowing pathways. <i>Journal of Physiology</i> , 1998 , 506 (Pt 3), 857-66	3.9	59
91	Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans. <i>Journal of Physiology</i> , 1998 , 511 (Pt 3), 947-56	3.9	91
90	Functional involvement of cerebral cortex in Duchenne muscular dystrophy. <i>Muscle and Nerve</i> , 1998 , 21, 662-4	3.4	25
89	Action tremor and weakness in Parkinson's disease: a study of the elbow extensors. <i>Movement Disorders</i> , 1998 , 13, 56-60	7	11
88	The offset cortical potential: an electrical correlate of movement inhibition in man. <i>Movement Disorders</i> , 1998 , 13, 330-5	7	42
87	Transcranial magnetic stimulation selectively impairs interhemispheric transfer of visuo-motor information in humans. <i>Experimental Brain Research</i> , 1998 , 118, 435-8	2.3	61
86	Facilitation of muscle evoked responses after repetitive cortical stimulation in man. <i>Experimental Brain Research</i> , 1998 , 122, 79-84	2.3	331
85	Gut feelings about recovery after stroke: the organization and reorganization of human swallowing motor cortex. <i>Trends in Neurosciences</i> , 1998 , 21, 278-82	13.3	56
84	Reduced excitability of the cortico-spinal system during the warning period of a reaction time task. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1998, 109, 489-95		77
83	Physiology and anatomy of possible oscillators in the central nervous system. <i>Movement Disorders</i> , 1998 , 13 Suppl 3, 24-8	7	22
82	Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1998 , 109, 397-401		320
81	Intracortical inhibition and facilitation in different representations of the human motor cortex. Journal of Neurophysiology, 1998, 80, 2870-81	3.2	382

80	Cortical correlate of the Piper rhythm in humans. <i>Journal of Neurophysiology</i> , 1998 , 80, 2911-7	3.2	292
79	Transcranial Magnetic Stimulation (TCMS) in Rehabilitation. <i>The Japanese Journal of Rehabilitation Medicine</i> , 1998 , 35, 17-17		
78	Stimulus/response curves as a method of measuring motor cortical excitability in man. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1997 , 105, 340-4		257
77	Rapid rate transcranial magnetic stimulationa safety study. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1997 , 105, 422-9		43
76	Explaining oropharyngeal dysphagia after unilateral hemispheric stroke. <i>Lancet, The</i> , 1997 , 350, 686-92	40	219
75	Abnormal access of axial vibrotactile input to deafferented somatosensory cortex in human upper limb amputees. <i>Journal of Neurophysiology</i> , 1997 , 77, 2753-64	3.2	64
74	Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing. <i>Experimental Brain Research</i> , 1997 , 114, 525-41	2.3	212
73	Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. <i>Journal of Neuroscience Methods</i> , 1997 , 74, 113-22	3	480
72	Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. <i>Annals of Neurology</i> , 1997 , 42, 95-107	9.4	276
71	Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. <i>Annals of Neurology</i> , 1997 , 42, 283-91	9.4	424
70	Cerebellar axial postural tremor. <i>Movement Disorders</i> , 1997 , 12, 977-84	7	32
69	Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1996 , 101, 263-72		196
68	Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1996 , 101, 58-66		100
67	The topographic representation of esophageal motor function on the human cerebral cortex. <i>Gastroenterology</i> , 1996 , 111, 855-62	13.3	56
66	Strength in Parkinson's disease: relationship to rate of force generation and clinical status. <i>Annals of Neurology</i> , 1996 , 39, 79-88	9.4	195
65	A propriospinal-like contribution to electromyographic responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man. <i>Experimental Brain Research</i> , 1996 , 109, 495-9	2.3	33
64	The contribution of transcortical pathways to long-latency stretch and tactile reflexes in human hand muscles. <i>Experimental Brain Research</i> , 1996 , 108, 147-54	2.3	35
63	The cortical topography of human swallowing musculature in health and disease. <i>Nature Medicine</i> , 1996 , 2, 1217-24	50.5	401

62	An additional source of potentials recorded from the scalp following magnetic stimulation over the lower occiput and adjoining neck. <i>Journal of Neurology</i> , 1995 , 242, 713-5	5.5	3
61	Short-latency trigemino-cervical reflexes in man. <i>Experimental Brain Research</i> , 1995 , 102, 474-82	2.3	53
60	Inhibition of hand muscle motoneurones by peripheral nerve stimulation in the relaxed human subject. Antidromic versus orthodromic input. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1995 , 97, 63-8		30
59	Modulation of esophageal responses to magnetic stimulation of the human brain by swallowing and by vagal stimulation. <i>Gastroenterology</i> , 1995 , 109, 1437-45	13.3	30
58	Motor coordination. Watching the brain think. <i>Current Biology</i> , 1995 , 5, 100-2	6.3	
57	Tonic vibration reflex and muscle afferent block in writer's cramp. <i>Annals of Neurology</i> , 1995 , 38, 155-62	29.4	204
56	Control of Human Voluntary Movement 1994 ,		118
55	Functional organisation of corticonuclear pathways to motoneurones of lower facial muscles in man. <i>Experimental Brain Research</i> , 1994 , 101, 465-72	2.3	42
54	Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. <i>Annals of Neurology</i> , 1994 , 35, 172-80	9.4	326
53	Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. <i>Annals of Neurology</i> , 1994 , 36, 90-6	9.4	59
52	Cortical function in progressive muscular atrophy and amyotrophic lateral sclerosis. <i>Journal of the Neurological Sciences</i> , 1994 , 124 Suppl, 72	3.2	2
51	Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. <i>Electroencephalography and Clinical Neurophysiology</i> , 1994 , 91, 79-92		2355
50	Human reflexes and late responses. Report of an IFCN committee. <i>Electroencephalography and Clinical Neurophysiology</i> , 1994 , 90, 393-403		78
49	Central EMG and tests of motor control. Report of an IFCN committee. <i>Electroencephalography and Clinical Neurophysiology</i> , 1994 , 90, 404-32		42
48	The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1994 , 93, 138-46		253
47	The time constants of motor and sensory peripheral nerve fibers measured with the method of latent addition. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1994 , 93, 147-5	54	53
46	The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1994 , 93, 21-6		41
45	Posture 1994 , 252-292		4

44	Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1993 , 89, 131-7		75
43	The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1993 , 89, 227-34		54
42	Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. <i>Experimental Brain Research</i> , 1993 , 94, 143-51	2.3	234
41	Cortical projection to erector spinae muscles in man as assessed by focal transcranial magnetic stimulation. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1992 , 85, 382-7		77
40	Primary orthostatic tremor: further observations in six cases. <i>Journal of Neurology</i> , 1992 , 239, 209-17	5.5	109
39	Transplantation of fetal dopamine neurons in Parkinson's disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. <i>Annals of Neurology</i> , 1992 , 31, 155-65	9.4	323
38	Stimulation of the human motor cortex through the scalp. Experimental Physiology, 1991, 76, 159-200	2.4	502
37	Further observations on the facilitation of muscle responses to cortical stimulation by voluntary contraction. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1991 , 81, 397-402		93
36	Multiple firing of motoneurones is produced by cortical stimulation but not by direct activation of descending motor tracts. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1991 , 81, 240-2		30
35	Neural transplantation in Parkinson's disease: the Swedish experience. <i>Progress in Brain Research</i> , 1990 , 82, 729-34	2.9	39
34	The blink reflex in patients with idiopathic torsion dystonia. <i>Archives of Neurology</i> , 1990 , 47, 413-6		71
33	Long latency reflexes of human arm muscles in health and disease. <i>Electroencephalography and Clinical Neurophysiology Supplement</i> , 1990 , 41, 251-63		14
32	Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. <i>Archives of Neurology</i> , 1989 , 46, 615-31		435
31	Interruption of motor programmes by electrical or magnetic brain stimulation in man. <i>Progress in Brain Research</i> , 1989 , 80, 467-72; discussion 465-6	2.9	17
30	The coexistence of bradykinesia and chorea in Huntington's disease and its implications for theories of basal ganglia control of movement. <i>Brain</i> , 1988 , 111 (Pt 2), 223-44	11.2	244
29	Fetal dopamine-rich mesencephalic grafts in Parkinson's disease. <i>Lancet, The</i> , 1988 , 2, 1483-4	40	103
28	The physiology of idiopathic dystonia. Canadian Journal of Neurological Sciences, 1987, 14, 521-7	1	57
27	The interpretation of electromyographic responses to electrical stimulation of the motor cortex in diseases of the upper motor neurone. <i>Journal of the Neurological Sciences</i> , 1987 , 80, 91-110	3.2	134

26	The Bereitschaftspotential, L-DOPA and Parkinson's disease. <i>Electroencephalography and Clinical Neurophysiology</i> , 1987 , 66, 263-74		128
25	Modulation of the long-latency reflex to stretch by the supplementary motor area in humans. <i>Neuroscience Letters</i> , 1987 , 75, 349-54	3.3	24
24	Habituation and conditioning of the human long latency stretch reflex. <i>Experimental Brain Research</i> , 1986 , 63, 197-204	2.3	117
23	Motor strategies involved in the performance of sequential movements. <i>Experimental Brain Research</i> , 1986 , 63, 585-95	2.3	48
22	The physiology of orthostatic tremor. <i>Archives of Neurology</i> , 1986 , 43, 584-7		136
21	Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. <i>Experimental Brain Research</i> , 1985 , 58, 544-51	2.3	52
20	Increase of the Bereitschaftspotential in simultaneous and sequential movements. <i>Neuroscience Letters</i> , 1985 , 62, 347-52	3.3	81
19	Myoclonus in the rat induced by p,p'-DDT and the role of altered monoamine function. <i>Neuropharmacology</i> , 1985 , 24, 361-73	5.5	10
18	Central motor conduction in neurological disease. <i>Electroencephalography and Clinical Neurophysiology</i> , 1985 , 61, S69-S70		11
17	The Stretch Reflex: Human Spinal and Long-Loop Reflexes 1984 , 45-75		2
17 16	The Stretch Reflex: Human Spinal and Long-Loop Reflexes 1984, 45-75 Reciprocal inhibition between the muscles of the human forearm. <i>Journal of Physiology</i> , 1984, 349, 519)-3,4,9	2 227
		2. 3	
16	Reciprocal inhibition between the muscles of the human forearm. <i>Journal of Physiology</i> , 1984 , 349, 519 Effects of motor cortex stimulation on spinal interneurones in intact man. <i>Experimental Brain</i>		227
16	Reciprocal inhibition between the muscles of the human forearm. <i>Journal of Physiology</i> , 1984 , 349, 519 Effects of motor cortex stimulation on spinal interneurones in intact man. <i>Experimental Brain Research</i> , 1984 , 54, 382-4 Movements not involved in posture are abnormal in Parkinson's disease. <i>Neuroscience Letters</i> , 1984	2.3	227 62
16 15 14	Reciprocal inhibition between the muscles of the human forearm. <i>Journal of Physiology</i> , 1984 , 349, 519 Effects of motor cortex stimulation on spinal interneurones in intact man. <i>Experimental Brain Research</i> , 1984 , 54, 382-4 Movements not involved in posture are abnormal in Parkinson's disease. <i>Neuroscience Letters</i> , 1984 , 47, 47-50	2.3	2276250
16 15 14	Reciprocal inhibition between the muscles of the human forearm. <i>Journal of Physiology</i> , 1984 , 349, 519 Effects of motor cortex stimulation on spinal interneurones in intact man. <i>Experimental Brain Research</i> , 1984 , 54, 382-4 Movements not involved in posture are abnormal in Parkinson's disease. <i>Neuroscience Letters</i> , 1984 , 47, 47-50 The use of peripheral feedback in the control of movement. <i>Trends in Neurosciences</i> , 1984 , 7, 253-257	2.3 3.3	227625095
16 15 14 13	Reciprocal inhibition between the muscles of the human forearm. <i>Journal of Physiology</i> , 1984 , 349, 519 Effects of motor cortex stimulation on spinal interneurones in intact man. <i>Experimental Brain Research</i> , 1984 , 54, 382-4 Movements not involved in posture are abnormal in Parkinson's disease. <i>Neuroscience Letters</i> , 1984 , 47, 47-50 The use of peripheral feedback in the control of movement. <i>Trends in Neurosciences</i> , 1984 , 7, 253-257 Duration of the first agonist EMG burst in ballistic arm movements. <i>Brain Research</i> , 1984 , 304, 183-7	2.3 3.3 13.3 3.7	227625095106

LIST OF PUBLICATIONS

8	Automatic and "voluntary' responses compensating for disturbances of human thumb movements. <i>Brain Research</i> , 1982 , 248, 33-41	57
7	Transcranial magnetic stimulation investigations of reaching and grasping movements72-83	
6	Non-invasive Amelioration of Essential Tremor via Phase-Locked Disruption of its Temporal Coherence	1
5	Saccadic chronostasis and the continuity of subjective temporal experience across eye movements149-163	3
4	Effects of tDCS on motor learning and memory formation: a consensus and critical position paper	2
3	Comparison between conventional electrodes and ultrasound monitoring to measure TMS evoked muscle contraction	2
2	Premovement suppression of corticospinal excitability may be a necessary part of movement preparation	1
1	Short interval intracortical inhibition as measured by TMS-EEG	2