
Ted Hackstadt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulator of Actin-Based Motility (RoaM) Downregulates Actin Tail Formation by Rickettsia rickettsii and Is Negatively Selected in Mammalian Cell Culture. MBio, 2022, 13, e0035322.	4.1	11
2	Nitric Oxide Inhibition of Rickettsia rickettsii. Infection and Immunity, 2021, 89, e0037121.	2.2	4
3	Disruption of the Golgi Apparatus and Contribution of the Endoplasmic Reticulum to the SARS-CoV-2 Replication Complex. Viruses, 2021, 13, 1798.	3.3	22
4	Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii. PLoS Pathogens, 2020, 16, e1008582.	4.7	27
5	Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection. Cell Reports, 2019, 26, 3380-3390.e5.	6.4	35
6	Microscopy Techniques Used to Visualize Immune-Labeled Chlamydial Inclusion Membrane Proteins in 2D and 3D. Microscopy and Microanalysis, 2019, 25, 1166-1167.	0.4	0
7	The intrinsically disordered Tarp protein from chlamydia binds actin with a partially preformed helix. Scientific Reports, 2018, 8, 1960.	3.3	18
8	The Rickettsial Ankyrin Repeat Protein 2 Is a Type IV Secreted Effector That Associates with the Endoplasmic Reticulum. MBio, 2018, 9, .	4.1	42
9	Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity. Journal of Bacteriology, 2018, 200, .	2.2	29
10	Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation. PLoS Pathogens, 2018, 14, e1006911.	4.7	66
11	Proteolytic Cleavage of the Immunodominant Outer Membrane Protein rOmpA in Rickettsia rickettsii. Journal of Bacteriology, 2017, 199, .	2.2	18
12	<i>Chlamydia</i> Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning. MBio, 2017, 8, .	4.1	67
13	Absence of Specific Chlamydia trachomatis Inclusion Membrane Proteins Triggers Premature Inclusion Membrane Lysis and Host Cell Death. Cell Reports, 2017, 19, 1406-1417.	6.4	99
14	A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion. Journal of Bacteriology, 2016, 198, 1347-1355.	2.2	49
15	Comparative Genome Sequencing of Rickettsia rickettsii Strains That Differ in Virulence. Infection and Immunity, 2015, 83, 1568-1576.	2.2	52
16	Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1). Biochemical and Biophysical Research Communications, 2015, 462, 165-170.	2.1	71
17	Expression and Localization of Predicted Inclusion Membrane Proteins in Chlamydia trachomatis. Infection and Immunity, 2015, 83, 4710-4718.	2.2	85
18	Targeted Knockout of the Rickettsia rickettsii OmpA Surface Antigen Does Not Diminish Virulence in a Mammalian Model System. MBio, 2015, 6, .	4.1	52

#	Article	IF	CITATIONS
19	Cell Biology. , 2014, , 101-138.		65
20	An α-Helical Core Encodes the Dual Functions of the Chlamydial Protein IncA. Journal of Biological Chemistry, 2014, 289, 33469-33480.	3.4	21
21	Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiology Reviews, 2014, 38, 779-801.	8.6	112
22	Expression and Targeting of Secreted Proteins from Chlamydia trachomatis. Journal of Bacteriology, 2014, 196, 1325-1334.	2.2	142
23	Chlamydia trachomatis Inclusion Membrane Protein CT228 Recruits Elements of the Myosin Phosphatase Pathway to Regulate Release Mechanisms. Cell Reports, 2013, 3, 1921-1931.	6.4	106
24	Bringing Culture to the Uncultured: Coxiella burnetii and Lessons for Obligate Intracellular Bacterial Pathogens. PLoS Pathogens, 2013, 9, e1003540.	4.7	28
25	Vesicle-Associated Membrane Protein 4 and Syntaxin 6 Interactions at the Chlamydial Inclusion. Infection and Immunity, 2013, 81, 3326-3337.	2.2	19
26	Role for Chlamydial Inclusion Membrane Proteins in Inclusion Membrane Structure and Biogenesis. PLoS ONE, 2013, 8, e63426.	2.5	62
27	Evolution and Conservation of Predicted Inclusion Membrane Proteins in Chlamydiae. Comparative and Functional Genomics, 2012, 2012, 1-13.	2.0	109
28	Developmental stage-specific metabolic and transcriptional activity of <i>Chlamydia trachomatis</i> in an axenic medium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19781-19785.	7.1	137
29	Chlamydia trachomatis Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization. Biochemical and Biophysical Research Communications, 2012, 420, 816-821.	2.1	37
30	Translation Inhibition of the Developmental Cycle Protein HctA by the Small RNA IhtA Is Conserved across Chlamydia. PLoS ONE, 2012, 7, e47439.	2.5	13
31	Diverse Requirements for Src-Family Tyrosine Kinases Distinguish Chlamydial Species. MBio, 2011, 2, .	4.1	30
32	Complementation of <i>Rickettsia rickettsii</i> RelA/SpoT Restores a Nonlytic Plaque Phenotype. Infection and Immunity, 2011, 79, 1631-1637.	2.2	32
33	Role for the Src Family Kinase Fyn in Sphingolipid Acquisition by Chlamydiae. Infection and Immunity, 2011, 79, 4559-4568.	2.2	15
34	Transformation Frequency of a mariner-Based Transposon in Rickettsia rickettsii. Journal of Bacteriology, 2011, 193, 4993-4995.	2.2	26
35	The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. Microbiology (United Kingdom), 2011, 157, 830-838.	1.8	52
36	Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Cellular Microbiology, 2010, 12, 1235-1249.	2.1	134

#	Article	IF	CITATIONS
37	Disruption of the <i>Rickettsia rickettsii</i> Sca2 Autotransporter Inhibits Actin-Based Motility. Infection and Immunity, 2010, 78, 2240-2247.	2.2	132
38	Phylogenetic Analysis of <i>Chlamydia trachomatis</i> Tarp and Correlation with Clinical Phenotype. Infection and Immunity, 2010, 78, 3678-3688.	2.2	70
39	The Conserved Tarp Actin Binding Domain Is Important for Chlamydial Invasion. PLoS Pathogens, 2010, 6, e1000997.	4.7	79
40	Limited Transcriptional Responses of Rickettsia rickettsii Exposed to Environmental Stimuli. PLoS ONE, 2009, 4, e5612.	2.5	36
41	The Chlamydial Inclusion Preferentially Intercepts Basolaterally Directed Sphingomyelin ontaining Exocytic Vacuoles. Traffic, 2008, 9, 2130-2140.	2.7	77
42	Induction of type III secretion by cell-free Chlamydia trachomatis elementary bodies. Microbial Pathogenesis, 2008, 45, 435-440.	2.9	33
43	Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases. Biochemical and Biophysical Research Communications, 2008, 371, 339-344.	2.1	66
44	Genomic Comparison of Virulent <i>Rickettsia rickettsii</i> Sheila Smith and Avirulent <i>Rickettsia rickettsii</i> lowa. Infection and Immunity, 2008, 76, 542-550.	2.2	108
45	Cytoplasmic lipid droplets are translocated into the lumen of the <i>Chlamydia trachomatis</i> parasitophorous vacuole. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9379-9384.	7.1	277
46	Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cellular Microbiology, 2007, 9, 2278-2288.	2.1	58
47	Chlamydia trachomatis Causes Centrosomal Defects Resulting in Chromosomal Segregation Abnormalities. Traffic, 2006, 7, 940-949.	2.7	82
48	A small RNA inhibits translation of the histone-like protein Hc1 inChlamydia trachomatis. Molecular Microbiology, 2006, 59, 541-550.	2.5	70
49	Maturation of Human Neutrophil Phagosomes Includes Incorporation of Molecular Chaperones and Endoplasmic Reticulum Quality Control Machinery. Molecular and Cellular Proteomics, 2006, 5, 620-634.	3.8	49
50	Regulation of the Chlamydia trachomatis Histone H1-Like Protein Hc2 Is IspE Dependent and IhtA Independent. Journal of Bacteriology, 2006, 188, 5289-5292.	2.2	40
51	Chlamydial TARP is a bacterial nucleator of actin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15599-15604.	7.1	168
52	Recent insights into the mechanisms of Chlamydia entry. Cellular Microbiology, 2005, 7, 051020044249005-???.	2.1	98
53	Analysis of Putative Chlamydia trachomatis Chaperones Scc2 and Scc3 and Their Use in the Identification of Type III Secretion Substrates. Journal of Bacteriology, 2005, 187, 6466-6478.	2.2	70
54	Tyrosine Phosphorylation of the Chlamydial Effector Protein Tarp Is Species Specific and Not Required for Recruitment of Actin. Infection and Immunity, 2005, 73, 3860-3868.	2.2	99

#	Article	IF	CITATIONS
55	Degradation of <i>Chlamydia pneumoniae</i> by Peripheral Blood Monocytic Cells. Infection and Immunity, 2005, 73, 4560-4570.	2.2	35
56	From The Cover: Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7451-7456.	7.1	57
57	Requirement for the Rac GTPase in Chlamydia trachomatis Invasion of Non-phagocytic Cells. Traffic, 2004, 5, 418-425.	2.7	86
58	Regulation of tryptophan synthase gene expression in Chlamydia trachomatis. Molecular Microbiology, 2003, 49, 1347-1359.	2.5	63
59	Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Molecular Microbiology, 2003, 48, 671-683.	2.5	156
60	Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proceedings of the United States of America, 2003, 100, 6771-6776.	7.1	246
61	Restricted Fusion of Chlamydia trachomatis Vesicles with Endocytic Compartments during the Initial Stages of Infection. Infection and Immunity, 2003, 71, 973-984.	2.2	146
62	Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. Journal of Cell Science, 2003, 116, 3793-3802.	2.0	182
63	Chlamydia trachomatis Induces Remodeling of the Actin Cytoskeleton during Attachment and Entry into HeLa Cells. Infection and Immunity, 2002, 70, 3793-3803.	2.2	139
64	The Chlamydial Inclusion: Escape from the Endocytic Pathway. Annual Review of Cell and Developmental Biology, 2002, 18, 221-245.	9.4	192
65	Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Molecular Microbiology, 2002, 38, 1048-1060.	2.5	140
66	Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes. Cellular Microbiology, 2002, 4, 273-283.	2.1	68
67	Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells. Cellular Microbiology, 2001, 3, 145-152.	2.1	71
68	Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Molecular Microbiology, 2001, 39, 1638-1650.	2.5	174
69	Isolation and Characterization of a Mutant Chinese Hamster Ovary Cell Line That Is Resistant to Chlamydia trachomatis Infection at a Novel Step in the Attachment Process. Infection and Immunity, 2001, 69, 5899-5904.	2.2	49
70	Three temporal classes of gene expression during the <i>Chlamydia trachomatis</i> developmental cycle. Molecular Microbiology, 2000, 37, 913-925.	2.5	233
71	Redirection of Host Vesicle Trafficking Pathways by Intracellular Parasites. Traffic, 2000, 1, 93-99.	2.7	78
72	Ultrastructural Analysis of Developmental Events in <i>Chlamydia pneumoniae</i> -Infected Cells. Infection and Immunity, 2000, 68, 2379-2385.	2.2	94

#	Article	IF	CITATIONS
73	The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cellular Microbiology, 1999, 1, 119-130.	2.1	202
74	Identification and characterization of a <i>Chlamydia trachomatis</i> early operon encoding four novel inclusion membrane proteins. Molecular Microbiology, 1999, 33, 753-765.	2.5	152
75	Developmental biology of Coxiella burnetii. Trends in Microbiology, 1999, 7, 149-154.	7.7	181
76	The diverse habitats of obligate intracellular parasites. Current Opinion in Microbiology, 1998, 1, 82-87.	5.1	75
77	7.10 Molecular Approaches to Studying Chlamydia. Methods in Microbiology, 1998, 27, 455-464.	0.8	0
78	Origins and functions of the chlamydial inclusion. Trends in Microbiology, 1997, 5, 288-293.	7.7	200
79	Response from Hackstadt. Trends in Microbiology, 1997, 5, 305-306.	7.7	2
80	Hc1-mediated effects on DNA structure: a potential regulator of chlamydial development. Molecular Microbiology, 1993, 9, 273-283.	2.5	74
81	Diversity in the Chlamydia trachomatis histone homologue Hc2. Gene, 1993, 132, 137-141.	2.2	39
82	DNA polymorphism in the conserved 190 kDa antigen gene repeat region among spotted fever group Rickettsiae. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1991, 1097, 77-80.	3.8	50
83	The Role of Lipopolysaccharides in the Virulence of Coxiella burnetii. Annals of the New York Academy of Sciences, 1990, 590, 27-32.	3.8	78

84 Initial Interactions of Chlamydiae with the Host Cell. , 0, , 126-148.

2