Nicolas Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7835411/publications.pdf

Version: 2024-02-01

82 2,149
papers citations h

257450 254184 43
h-index g-index

84 84 all docs citations

84 times ranked 2194 citing authors

#	Article	IF	CITATIONS
1	Anisotropic thermal conductivity of nanocolumnar W thin films. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 426, 127878.	2.1	1
2	Building micro-capsules using water-in-water emulsion droplets as templates. Journal of Colloid and Interface Science, 2022, 613, 681-696.	9.4	27
3	Stabilization of all-aqueous droplets by interfacial self-assembly of fatty acids bilayers. Journal of Colloid and Interface Science, 2022, 617, 257-266.	9.4	10
4	Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	13
5	Reversible photocontrol of DNA coacervation. Methods in Enzymology, 2021, 646, 329-351.	1.0	7
6	Self-programmed enzyme phase separation and multiphase coacervate droplet organization. Chemical Science, 2021, 12, 2794-2802.	7.4	34
7	Fast and Ample Light Controlled Actuation of Monodisperse Allâ€DNA Microgels. Advanced Functional Materials, 2021, 31, 2010396.	14.9	11
8	Microstructural analysis and electrical behaviours of co-sputtered W–Ag thin films with a tilted columnar architecture. Journal Physics D: Applied Physics, 2021, 54, 255304.	2.8	3
9	Tuning the Optical Properties of WO3 Films Exhibiting a Zigzag Columnar Microstructure. Coatings, 2021, 11, 438.	2.6	5
10	Contrasted morphologies in nanostructured Janus W-Cu columns. Materials Today Communications, 2021, 27, 102331.	1.9	2
11	Fatty Acid Vesicles and Coacervates as Model Prebiotic Protocells. ChemSystemsChem, 2021, 3, e2100024.	2.6	30
12	Detection of Indoor Air Pollutants Using Reactive Sputtering/GLAD of Tin Oxide Thin Films., 2021, 5, .		0
13	Spontaneous membrane-less multi-compartmentalization <i>via</i> aqueous two-phase separation in complex coacervate micro-droplets. Chemical Communications, 2020, 56, 12717-12720.	4.1	39
14	Pt–Ti Alloy Coatings Deposited by DC Magnetron Sputtering: A Potential Current Collector at High Temperature. Coatings, 2020, 10, 224.	2.6	3
15	Influence of Thickness and Sputtering Pressure on Electrical Resistivity and Elastic Wave Propagation in Oriented Columnar Tungsten Thin Films. Nanomaterials, 2020, 10, 81.	4.1	19
16	A 4-view imaging to reveal microstructural differences in obliquely sputter-deposited tungsten films. Materials Letters, 2020, 264, 127381.	2.6	13
17	Advanced Strategies in Thin Films Engineering by Magnetron Sputtering. Coatings, 2020, 10, 419.	2.6	4
18	Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. Angewandte Chemie, 2019, 131, 14736-14740.	2.0	31

#	Article	lF	Citations
19	Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. Angewandte Chemie - International Edition, 2019, 58, 14594-14598.	13.8	107
20	High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications. Thin Solid Films, 2019, 691, 137587.	1.8	10
21	Thermoelectric properties improvement in Mg2Sn thin films by structural modification. Journal of Alloys and Compounds, 2019, 797, 1078-1085.	5.5	11
22	Dynamic Synthetic Cells Based on Liquid–Liquid Phase Separation. ChemBioChem, 2019, 20, 2553-2568.	2.6	99
23	Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensing. Applied Surface Science, 2019, 484, 152-168.	6.1	29
24	Nanostructured Ti1-xCux thin films with tailored electrical and morphological anisotropy. Thin Solid Films, 2019, 672, 47-54.	1.8	10
25	Nanoplasmonic response of porous Au-TiO ₂ thin films prepared by oblique angle deposition. Nanotechnology, 2019, 30, 225701.	2.6	33
26	Electrical resistivity and elastic wave propagation anisotropy in glancing angle deposited tungsten and gold thin films. Applied Surface Science, 2019, 475, 606-614.	6.1	20
27	Preparation of Swellable Hydrogelâ€Containing Colloidosomes from Aqueous Twoâ€Phase Pickering Emulsion Droplets. Angewandte Chemie - International Edition, 2018, 57, 7780-7784.	13.8	51
28	Preparation of Swellable Hydrogelâ€Containing Colloidosomes from Aqueous Twoâ€Phase Pickering Emulsion Droplets. Angewandte Chemie, 2018, 130, 7906-7910.	2.0	12
29	Exploiting the dodecane and ozone sensing capabilities of nanostructured tungsten oxide films. Sensors and Actuators B: Chemical, 2018, 266, 773-783.	7.8	21
30	W-Cu sputtered thin films grown at oblique angles from two sources: Pressure and shielding effects. Surface and Coatings Technology, 2018, 343, 153-159.	4.8	14
31	Electron Tomography of Plasmonic Au Nanoparticles Dispersed in a TiO ₂ Dielectric Matrix. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42882-42890.	8.0	20
32	Influence of Sputtering Parameters on Structural, Electrical and Thermoelectric Properties of Mg–Si Coatings. Coatings, 2018, 8, 380.	2.6	3
33	Antagonistic chemical coupling in self-reconfigurable host–guest protocells. Nature Communications, 2018, 9, 3652.	12.8	80
34	Anisotropic conductivity enhancement in inclined W-Cu columnar films. Materials Letters, 2018, 232, 126-129.	2.6	5
35	Nano-sculptured Janus-like TiAg thin films obliquely deposited by GLAD co-sputtering for temperature sensing. Nanotechnology, 2018, 29, 355706.	2.6	22
36	Correlation between structure and electrical resistivity of W-Cu thin films prepared by GLAD co-sputtering. Surface and Coatings Technology, 2017, 313, 1-7.	4.8	24

3

#	Article	IF	CITATIONS
37	Correlations between structure, composition and electrical properties of tungsten/tungsten oxide periodic multilayers sputter deposited by gas pulsing. Superlattices and Microstructures, 2017, 101, 127-137.	3.1	2
38	Light-induced dynamic shaping and self-division of multipodal polyelectrolyte-surfactant microarchitectures via azobenzene photomechanics. Scientific Reports, 2017, 7, 41327.	3.3	35
39	In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles. Review of Scientific Instruments, 2017, 88, 025105.	1.3	6
40	Catanionic Coacervate Droplets as a Surfactantâ€Based Membraneâ€Free Protocell Model. Angewandte Chemie, 2017, 129, 13877-13881.	2.0	22
41	Catanionic Coacervate Droplets as a Surfactantâ€Based Membraneâ€Free Protocell Model. Angewandte Chemie - International Edition, 2017, 56, 13689-13693.	13.8	65
42	Refolding of Aggregation-Prone ScFv Antibody Fragments Assisted by Hydrophobically Modified Poly(sodium acrylate) Derivatives. Macromolecular Bioscience, 2017, 17, 1600213.	4.1	1
43	Aggregation of Antibody Drug Conjugates at Room Temperature: SAXS and Light Scattering Evidence for Colloidal Instability of a Specific Subpopulation. Langmuir, 2016, 32, 4848-4861.	3.5	24
44	Temperature dependence of electrical resistivity in oxidized vanadium films grown by the GLAD technique. Surface and Coatings Technology, 2016, 304, 476-485.	4.8	17
45	Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nature Communications, 2016, 7, 13068.	12.8	116
46	Selective Uptake and Refolding of Globular Proteins in Coacervate Microdroplets. Langmuir, 2016, 32, 5881-5889.	3.5	74
47	Structural, electrical and magnetic characterization of in-situ crystallized ZnO:Co thin films synthesized by reactive magnetron sputtering. Materials Chemistry and Physics, 2015, 161, 26-34.	4.0	15
48	Prevention of Aggregation and Renaturation of Carbonic Anhydrase via Weak Association with Octadecyl- or Azobenzene-Modified Poly(acrylate) Derivatives. Langmuir, 2015, 31, 338-349.	3.5	21
49	Improvement of ozone detection with GLAD WO3 films. Materials Letters, 2015, 155, 1-3.	2.6	30
50	Optical properties of nanostructured WO3 thin films by GLancing Angle Deposition: Comparison between experiment and simulation. Surface and Coatings Technology, 2015, 276, 136-140.	4.8	17
51	Flash annealing influence on structural and electrical properties of TiO2/TiO/Ti periodic multilayers. Thin Solid Films, 2014, 553, 47-51.	1.8	1
52	Process monitoring during AlNxOy deposition by reactive magnetron sputtering and correlation with the film's properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 021307.	2.1	7
53	Structural and electrical properties in tungsten/tungsten oxide multilayers. Thin Solid Films, 2014, 553, 93-97.	1.8	9
54	Quantitative characterization by asymmetrical flow field-flow fractionation of IgG thermal aggregation with and without polymer protective agents. Analytical and Bioanalytical Chemistry, 2014, 406, 7539-7547.	3.7	16

#	Article	IF	CITATIONS
55	Prevention of Thermally Induced Aggregation of IgG Antibodies by Noncovalent Interaction with Poly(acrylate) Derivatives. Biomacromolecules, 2014, 15, 2952-2962.	5.4	46
56	Low temperature electronic transport in sputter deposited a-IGZO films. Current Applied Physics, 2014, 14, 1481-1485.	2.4	6
57	Enhanced tunability of the composition in silicon oxynitride thin films by the reactive gas pulsing process. Applied Surface Science, 2014, 290, 148-153.	6.1	11
58	Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition. Thin Solid Films, 2013, 534, 275-281.	1.8	70
59	Interdependence of structural and electrical properties in tantalum/tantalum oxide multilayers. Surface and Coatings Technology, 2013, 227, 38-41.	4.8	18
60	Anisotropic electrical resistivity during annealing of oriented columnar titanium films. Materials Letters, 2013, 105, 20-23.	2.6	20
61	The interdependence of structural and electrical properties in TiO2/TiO/Ti periodic multilayers. Acta Materialia, 2013, 61, 4215-4225.	7.9	14
62	Accurate control of friction with nanosculptured thin coatings: Application to gripping in microscale assembly. Tribology International, 2013, 59, 67-78.	5.9	13
63	METAL-TO-DIELECTRIC TRANSITION INDUCED BY ANNEALING OF ORIENTED TITANIUM THIN FILMS. Functional Materials Letters, 2013, 06, 1250051.	1.2	15
64	Photocatalytic Activity of Nanostructured Titanium Dioxide Thin Films. International Journal of Photoenergy, 2012, 2012, 1-8.	2.5	12
65	Optical Properties of WO3 Thin Films Modeled by Finite-Difference Time-Domain and Fabricated by Glancing Angle Deposition. Journal of Nanoscience and Nanotechnology, 2012, 12, 9125-9130.	0.9	4
66	The Thermally Induced Aggregation of Immunoglobulin G in Solution is Prevented by Amphipols. Chemistry Letters, 2012, 41, 1380-1382.	1.3	8
67	A theoretical model for the electrical properties of chromium thin films sputter deposited at oblique incidence. Journal Physics D: Applied Physics, 2011, 44, 215301.	2.8	36
68	The reactive gas pulsing process for tuneable properties of sputter deposited titanium oxide, nitride and oxynitride coatings. International Journal of Materials and Product Technology, 2010, 39, 159.	0.2	4
69	Effect of various parameters on the conductivity of free standing electrosynthesized polypyrrole films. Synthetic Metals, 2010, 160, 2180-2185.	3.9	58
70	Photocatalysis of Ag Doped TiO x Films Prepared at Room Temperature. Catalysis Letters, 2009, 132, 244-247.	2.6	6
71	Physical and Mechanical Properties of CrAIN and CrSiN Ternary Systems for Wood Machining Applications. Plasma Processes and Polymers, 2009, 6, S113.	3.0	13
72	ZrO _{<i>x</i>} N _{<i>y</i>} decorative thin films prepared by the reactive gas pulsing process. Journal Physics D: Applied Physics, 2009, 42, 195501.	2.8	24

#	Article	lF	CITATION
73	Glancing angle deposition to control microstructure and roughness of chromium thin films. Wear, 2008, 264, 444-449.	3.1	22
74	The contribution of grain boundary barriers to the electrical conductivity of titanium oxide thin films. Applied Physics Letters, 2008, 93, 064102.	3.3	19
75	Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process. Applied Surface Science, 2007, 253, 5312-5316.	6.1	98
76	Optical and Electrical Properties of W-O-N Coatings Deposited by DC Reactive Sputtering. Plasma Processes and Polymers, 2007, 4, S69-S75.	3.0	11
77	Phase mixture in MOCVD and reactive sputtering TiOxNy thin films revealed and quantified by XPS factorial analysis. Acta Materialia, 2006, 54, 3067-3074.	7.9	28
78	Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering. Thin Solid Films, 2003, 440, 66-73.	1.8	56
79	Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. Journal Physics D: Applied Physics, 2003, 36, 1023-1029.	2.8	153
80	Influence of two reactive gases on the instabilities of the reactive sputtering process. Surface and Coatings Technology, 2001, 142-144, 206-210.	4.8	22
81	Intrinsic low energy bombardment of titanium chromium oxide thin films prepared by reactive sputtering. Surface and Coatings Technology, 2000, 130, 280-289.	4.8	14
82	High rate and process control of reactive sputtering by gas pulsing: the Ti–O system. Thin Solid Films, 2000, 377-378, 550-556.	1.8	41