Qing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/783439/publications.pdf

Version: 2024-02-01

		394421	395702
35	1,148	19	33
papers	citations	h-index	g-index
35	35	35	952
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14309-14318.	10.3	157
2	High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. Journal of Power Sources, 2019, 415, 165-171.	7.8	139
3	Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries. Journal of Power Sources, 2020, 461, 228151.	7.8	99
4	Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. Electrochimica Acta, 2019, 324, 134902.	5.2	64
5	Hierarchically nitrogen-doped carbon wrapped Ni _{0.6} Fe _{0.4} Se ₂ binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes. Journal of Materials Chemistry A, 2021, 9, 1610-1622.	10.3	52
6	BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. Journal of Colloid and Interface Science, 2020, 580, 429-438.	9.4	47
7	Rational Design of Yolk–Shell ZnCoSe@Nâ€Doped Dual Carbon Architectures as Longâ€Life and Highâ€Rate Anodes for Half/Full Naâ€Ion Batteries. Small, 2021, 17, e2101887.	10.0	46
8	Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Metals, 2022, 41, 2280-2291.	7.1	46
9	Nitrogen-Coordinated CoS ₂ @NC Yolk–Shell Polyhedrons Catalysts Derived from a Metal–Organic Framework for a Highly Reversible Li-O ₂ Battery. ACS Applied Materials & Interfaces, 2021, 13, 17658-17667.	8.0	43
10	Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Metals, 2021, 40, 2464-2473.	7.1	41
11	Optimization of Synergistic Leaching of Valuable Metals from Spent Lithium-Ion Batteries by the Sulfuric Acid-Malonic Acid System Using Response Surface Methodology. ACS Applied Materials & Interfaces, 2022, 14, 11359-11374.	8.0	38
12	Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ Cathode Material for Sodium lon Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4994-5004.	6.7	38
13	Ultrasound-assisted two-step water-bath synthesis of g-C ₃ N ₄ /BiOBr composites: visible light-driven photocatalysis, sterilization, and reaction mechanism. New Journal of Chemistry, 2019, 43, 8711-8721.	2.8	35
14	Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. Journal of Advanced Ceramics, 2022, 11, 158-171.	17.4	35
15	A Simple and Lowâ€Cost Method to Synthesize Crâ€Doped αâ€Fe ₂ O ₃ Electrode Materials for Lithiumâ€ion Batteries. ChemElectroChem, 2019, 6, 856-864.	3.4	30
16	Biocarbon with different microstructures derived from corn husks and their potassium storage properties. Rare Metals, 2021, 40, 3166-3174.	7.1	30
17	Fabrication of Porous Carbon with Controllable Nitrogen Doping as Anode for Highâ€Performance Potassium″on Batteries. ChemElectroChem, 2019, 6, 3699-3707.	3.4	28
18	Facile hydrothermal synthesis of urchinâ€like <scp> NiCo ₂ O ₄ </scp> as advanced electrochemical pseudocapacitor materials. International Journal of Energy Research, 2021, 45, 20186-20198.	4. 5	28

#	Article	IF	CITATIONS
19	Recent Advances on Spinel Zinc Manganate Cathode Materials for Zincâ€lon Batteries. Chemical Record, 2022, 22, .	5.8	22
20	Synthesis and electrochemical properties of LiFePO4 cathode material by ionic thermal method using eutectic mixture of tetramethyl ammonium chloride–urea. Rare Metals, 2021, 40, 3477-3484.	7.1	19
21	Hydrothermal synthesis of nano spheroidâ€like <scp> ZnMn ₂ O ₄ </scp> materials as highâ€performance anodes for lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 18081-18090.	4.5	13
22	Preparation and electrochemical properties of <scp>Alâ€F</scp> coâ€doped spinel <scp> LiMn ₂ O ₄ </scp> singleâ€crystal material for lithiumâ€ion battery. International Journal of Energy Research, 2021, 45, 21158-21169.	4.5	13
23	Carbothermal reduction preparation and performance of LiFePO4/C by using ammonium jarosite extracted from vanadium slag as iron source. Ionics, 2019, 25, 5725-5734.	2.4	11
24	In Situ Construction of Multibuffer Structure 3D CoSn@SnO \times /CoO \times @C Anode Material for Ultralong Life Lithium Storage. Energy Technology, 2020, 8, 1900829.	3.8	11
25	Dualâ€phase structure design of Mnâ€site nickel doping <scp> Li ₂ MnSiO ₄ </scp> @C cathode material for improved electrochemical lithium storage performance. International Journal of Energy Research, 2021, 45, 14720-14731.	4.5	11
26	N-doped hollow carbon spheres as a high-performance anode for potassium-based dual-ion battery. Journal of Energy Storage, 2022, 54, 105285.	8.1	11
27	Biomass CQDs derivate carbon as high-performance anode for K-ion battery. Journal of Alloys and Compounds, 2022, 922, 166260.	5.5	11
28	Twoâ€position intrinsic element complement: Synthesis and electrochemical properties of Li _{2 +} <scp>_xMn_{1â€x}SiO₄@carbon as cathoo materials for lithium batteries. International Journal of Energy Research, 2021, 45, 16922-16931.</scp>	de4.5	7
29	CuS nanoblocks embedded in the three-dimensional porous carbon as composite anode materials for high-performance lithium-ion battery. Ionics, 2021, 27, 897-905.	2.4	6
30	<scp>P2â€K_O</scp> _. <scp>₇₆Fe_O</scp> _. <scp>from earthâ€abundant elements for rechargeable potassium ion battery. Energy Storage, 2022, 4, e277.</scp>	<sub>2<td>sub>Mg<sub:< td=""></sub:<></td></sub>	sub>Mg <sub:< td=""></sub:<>
31	Controllable synthesis of polystyrene microspheres used as template and inâ€situ carbon source for <scp> Li ₂ MnSiO ₄ </scp> cathode material to boost lithiumâ€ion batteries performance. International Journal of Energy Research, 2022, 46, 1711-1721.	4.5	4
32	High cycling stability graphite cathode modified by artificial CEI for potassium-based dual-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165436.	5 . 5	4
33	Highâ€performance <scp>LiFePO₄</scp> cathode material was prepared by multiple intensification process with acidâ€washed iron red as raw material. International Journal of Energy Research, 2021, 45, 18245-18256.	4.5	3
34	Ultrahigh capacity potassium-based dual carbon batteries with a high concentration electrolyte. Sustainable Energy and Fuels, 0, , .	4.9	2
35	Tuning the structural stability and spin-glass behavior in î±-MnO ₂ nanotubes by Sn ion doping. Physical Chemistry Chemical Physics, 2022, , .	2.8	0