
He Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7834292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attosecond Time-Resolved Autoionization of Argon. Physical Review Letters, 2010, 105, 143002.	7.8	308
2	Organic transistors with high thermal stability for medical applications. Nature Communications, 2012, 3, 723.	12.8	290
3	Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend. Organic Electronics, 2010, 11, 1779-1785.	2.6	211
4	Attosecond science based on high harmonic generation from gases and solids. Nature Communications, 2020, 11, 2748.	12.8	155
5	Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature, 2021, 594, 380-384.	27.8	138
6	From Monolayer to Multilayer N hannel Polymeric Fieldâ€Effect Transistors with Precise Conformational Order. Advanced Materials, 2012, 24, 951-956.	21.0	109
7	Correlating the scattered intensities of P3HT and PCBM to the current densities of polymer solar cells. Chemical Communications, 2011, 47, 436-438.	4.1	103
8	Enhanced Chargeâ€Carrier Injection and Collection Via Lamination of Doped Polymer Layers pâ€Doped with a Solutionâ€Processible Molybdenum Complex. Advanced Functional Materials, 2014, 24, 2197-2204.	14.9	77
9	Device Characteristics of Bulk-Heterojunction Polymer Solar Cells are Independent of Interfacial Segregation of Active Layers. Chemistry of Materials, 2011, 23, 2020-2023.	6.7	71
10	Exciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases. Journal of Physical Chemistry C, 2015, 119, 19590-19595.	3.1	65
11	Face-on stacking and enhanced out-of-plane hole mobility in graphene-templated copper phthalocyanine. Chemical Communications, 2014, 50, 5319-5321.	4.1	56
12	Halogenation of a Nonplanar Molecular Semiconductor to Tune Energy Levels and Bandgaps for Electron Transport. Chemistry of Materials, 2015, 27, 1892-1900.	6.7	55
13	Post-deposition Processing Methods To Induce Preferential Orientation in Contorted Hexabenzocoronene Thin Films. ACS Nano, 2013, 7, 294-300.	14.6	50
14	The Critical Number of Gold Atoms for a Metallic State Nanocluster: Resolving a Decades-Long Question. ACS Nano, 2021, 15, 13980-13992.	14.6	49
15	A setup for extreme-ultraviolet ultrafast angle-resolved photoelectron spectroscopy at 50-kHz repetition rate. Review of Scientific Instruments, 2019, 90, 023105.	1.3	48
16	Effect of Composition on the Spin Relaxation of Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 1502-1507.	4.6	47
17	Manipulating the Phase Distributions and Carrier Transfers in Hybrid Quasiâ€Twoâ€Dimensional Perovskite Films. Solar Rrl, 2019, 3, 1800359.	5.8	46
18	Self-assembled propylammonium cations at grain boundaries and the film surface to improve the efficiency and stability of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 23739-23746.	10.3	41

HE WANG

#	Article	IF	CITATIONS
19	Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the Organic–Metal Oxide Interface. Journal of Physical Chemistry C, 2013, 117, 20474-20484.	3.1	39
20	Age-induced recrystallization in perovskite solar cells. Organic Electronics, 2019, 68, 143-150.	2.6	39
21	Supramolecular Order of Solutionâ€Processed Perylenediimide Thin Films: Highâ€Performance Smallâ€Channel nâ€Type Organic Transistors. Advanced Functional Materials, 2011, 21, 4479-4486.	14.9	38
22	Atom-by-Atom Evolution of the Same Ligand-Protected Au ₂₁ , Au ₂₂ , Au ₂₂ Cd ₁ , and Au ₂₄ Nanocluster Series. Journal of the American Chemical Society, 2020, 142, 20426-20433.	13.7	36
23	Atomically Precise Au ₄₂ Nanorods with Longitudinal Excitons for an Intense Photothermal Effect. Journal of the American Chemical Society, 2022, 144, 12381-12389.	13.7	36
24	Highâ€Performance Ternary Perovskite–Organic Solar Cells. Advanced Materials, 2022, 34, e2109348.	21.0	34
25	Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 3284-3289.	4.6	30
26	Charge Transfer and Diffusion at the Perovskite/PCBM Interface Probed by Transient Absorption and Reflection. Journal of Physical Chemistry C, 2019, 123, 22095-22103.	3.1	26
27	Heterometal-Doped M ₂₃ (M = Au/Ag/Cd) Nanoclusters with Large Dipole Moments. ACS Nano, 2020, 14, 6599-6606.	14.6	26
28	Tail Stateâ€Assisted Charge Injection and Recombination at the Electronâ€Collecting Interface of P3HT:PCBM Bulkâ€Heterojunction Polymer Solar Cells. Advanced Energy Materials, 2012, 2, 1447-1455.	19.5	24
29	Benzo[1,2-b:6,5-bâ€2]dithiophene(dithiazole)-4,5-dione derivatives: synthesis, electronic properties, crystal packing and charge transport. Journal of Materials Chemistry C, 2013, 1, 1467.	5.5	23
30	Porous Halide Perovskite–Polymer Nanocomposites for Explosive Detection with a High Sensitivity. Advanced Materials Interfaces, 2019, 6, 1801686.	3.7	22
31	Electronic structure and carrier transport at laminated polymer homojunctions. Organic Electronics, 2013, 14, 149-155.	2.6	15
32	Generation of Coherent Optical Phonons in Methylammonium Lead Iodide Thin Films. Journal of Physical Chemistry C, 2018, 122, 17035-17041.	3.1	13
33	Bulk heterojunction perovskite solar cells incorporated with p-type low optical gap conjugated polymers. Nano Energy, 2022, 93, 106907.	16.0	12
34	Fluorinated and hydrogenated self-assembled monolayers (SAMs) on anodes: Effects of SAM chemistry on device characteristics of polymer solar cells. Organic Electronics, 2014, 15, 3333-3340.	2.6	10
35	Blade-coated inverted perovskite solar cells in an ambient environment. Solar Energy Materials and Solar Cells, 2022, 246, 111894.	6.2	10
36	Ultrafast Carrier Dynamics of Dual Emissions from the Orthorhombic Phase in Methylammonium Lead Iodide Perovskites Revealed by Two-Dimensional Coherent Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 4625-4631.	4.6	9

HE WANG

#	Article	IF	CITATIONS
37	Coherent vibrational dynamics of Au ₁₄₄ (SR) ₆₀ nanoclusters. Chemical Science, 2022, 13, 8124-8130.	7.4	8
38	Single-electron charging and ultrafast dynamics of bimetallic Au144â^'xAgx(PET)60 nanoclusters. Nano Research, 2022, 15, 8573-8578.	10.4	8
39	Comment on "Tail Stateâ€Assisted Charge Injection and Recombination at the Electronâ€Collecting Interface of P3HT:PCBM Bulkâ€Heterojunction Polymer Solar Cells― Advanced Energy Materials, 2013, 3, 1537-1538.	19.5	3
40	Photoactivation Properties of Self-n-Doped Perylene Diimides: Concentration-dependent Radical Anion and Dianion Formation. ACS Materials Au, 2022, 2, 482-488.	6.0	3
41	Organic Transistors: Supramolecular Order of Solution-Processed Perylenediimide Thin Films: High-Performance Small-Channel n-Type Organic Transistors (Adv. Funct. Mater. 23/2011). Advanced Functional Materials, 2011, 21, 4478-4478.	14.9	1
42	Carrier Dynamics Between the Ordered and Disordered Orthorhombic Lattice Domains in Methylammonium Lead Iodide Perovskite. , 2019, , .		0