Nickolay Aleksandrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/783412/publications.pdf

Version: 2024-02-01

304743 233421 2,123 67 22 45 citations h-index g-index papers 67 67 67 1203 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Influence of Electric Field on the Rate of Formation of Positive Hydrated Ions in Plasma-Containing Water Vapor. Plasma Physics Reports, 2022, 48, 131-140.	0.9	2
2	Kinetics of charged species in non-equilibrium plasma in water vapor- and hydrocarbon-containing gaseous mixtures. Journal Physics D: Applied Physics, 2022, 55, 383002.	2.8	7
3	Gasdynamic Flow Control by Ultrafast Local Heating in a Strongly Nonequilibrium Pulsed Plasma. Plasma Physics Reports, 2021, 47, 148-209.	0.9	33
4	Simulation of decelerating streamers in inhomogeneous atmosphere with implications for runaway electron generation. Journal of Applied Physics, 2021, 129, .	2.5	25
5	The effect of electron heating on plasma decay in H2:O2 mixture excited by a repetitively pulsed nanosecond discharge. Journal Physics D: Applied Physics, 2021, 54, 335201.	2.8	3
6	Streamer self-focusing in an external longitudinal magnetic field. Physical Review E, 2021, 103, 063201.	2.1	14
7	Numerical Modeling of ns-SDBD Plasma Formation for Flow Control by Superfast Local Heating. , 2021, , .		O
8	The Effect of Gas Heating on the Decay of Plasma with Hydrated Ions after a High-Voltage Nanosecond Discharge. Plasma Physics Reports, 2021, 47, 742-751.	0.9	2
9	Runaway Electron Generation by Decelerating Streamers in Inhomogeneous Atmosphere. , 2021, , .		O
10	Numerical modeling of NS discharge development in strong magnetic field., 2021,,.		0
11	Monte Carlo simulation of negative ion kinetics in air plasmas in a time-varying electric field. Journal Physics D: Applied Physics, 2020, 53, 055203.	2.8	7
12	Blocking streamer development by plane gaseous layers of various densities. Plasma Sources Science and Technology, 2020, 29, 034002.	3.1	10
13	Spatial distribution of radiation emitted by pulsed surface dielectric barrier discharge in air. Plasma Sources Science and Technology, 2020, 29, 035006.	3.1	9
14	How pulse polarity and photoionization control streamer discharge development in long air gaps. Plasma Sources Science and Technology, 2020, 29, 075004.	3.1	28
15	â€~Gas-dynamic diode': Streamer interaction with sharp density gradients. Plasma Sources Science and Technology, 2019, 28, 095022.	3.1	5
16	The effect of electron heating on hydrocarbon plasma decay after high-voltage nanosecond discharge. Journal Physics D: Applied Physics, 2019, 52, 505201.	2.8	4
17	Electron Transport Coefficients in Nonequilibrium Plasmas of Water Vapor and Fuel–Oxygen Mixtures. Plasma Physics Reports, 2019, 45, 761-769.	0.9	3
18	Electron swarm properties and nanosecond-pulsed discharge characteristics in partially oxidized fuel:air mixtures. Plasma Sources Science and Technology, 2019, 28, 025009.	3.1	5

#	Article	IF	CITATIONS
19	Barrier properties influence on the surface dielectric barrier discharge driven by single voltage pulses of different duration. Journal Physics D: Applied Physics, 2019, 52, 324001.	2.8	17
20	Development of high-voltage nanosecond discharge in strongly non-uniform gas. Plasma Sources Science and Technology, 2019, 28, 015005.	3.1	11
21	Ignition of Hydrocarbon–Oxygen Mixtures by Means of a Nanosecond Surface Dielectric Barrier Discharge. Plasma Physics Reports, 2018, 44, 1066-1075.	0.9	7
22	Kinetics of Energetic Oâ^' lons in the Discharge Plasmas of Water Vapor and H2O-Containing Mixtures. Plasma Physics Reports, 2018, 44, 986-995.	0.9	5
23	Recombination of electrons with water cluster ions in the afterglow of a high-voltage nanosecond discharge. Journal Physics D: Applied Physics, 2018, 51, 264003.	2.8	13
24	Processes controlling properties of high-voltage nanosecond discharge plasma in combustible mixtures. Journal of Physics: Conference Series, 2018, 1058, 012053.	0.4	2
25	The effect of fuel oxidation on electron swarm properties and nanosecond discharge characteristics in combustible mixtures. Plasma Sources Science and Technology, 2018, 27, 115004.	3.1	8
26	Plasma Decay in the Afterglow of High-Voltage Nanosecond Discharges in Unsaturated and Oxygenated Hydrocarbons. Plasma Physics Reports, 2017, 43, 1198-1207.	0.9	6
27	Development of high-voltage nanosecond discharge in combustible mixtures. Bulletin of the Lebedev Physics Institute, 2017, 44, 292-294.	0.6	5
28	Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures. Physical Review E, 2016, 94, 013204.	2.1	30
29	Kinetic mechanism of plasma recombination in methane, ethane and propane after high-voltage nanosecond discharge. Plasma Sources Science and Technology, 2016, 25, 044006.	3.1	17
30	Plasma decay in high-voltage nanosecond discharges in oxygen-containing mixtures. Plasma Physics Reports, 2016, 42, 59-67.	0.9	20
31	Ignition of hydrocarbon : air mixtures by a nanosecond surface dielectric barrier discharge. Plasma Sources Science and Technology, 2015, 24, 045014.	3.1	36
32	Fast gas heating in N ₂ /O ₂ mixtures under nanosecond surface dielectric barrier discharge: the effects of gas pressure and composition. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140330.	3 . 4	20
33	Kinetics of low-temperature plasmas for plasma-assisted combustion and aerodynamics. Plasma Sources Science and Technology, 2014, 23, 015017.	3.1	39
34	Ignition of acetylene by high-voltage nanosecond discharge. Technical Physics Letters, 2013, 39, 606-608.	0.7	3
35	Plasma-assisted ignition and combustion. Progress in Energy and Combustion Science, 2013, 39, 61-110.	31.2	759
36	Plasma-Assisted Ignition and Deflagration-to-Detonation Transition. , 2013, , .		0

#	Article	IF	CITATIONS
37	Nanosecond Discharge Ignition of Lean C2H2-Containing Mixtures. , 2013, , .		0
38	Plasma-Assisted Ignition and Deflagration-to-Detonation Transition. , 2012, , .		0
39	Plasma decay in air and O ₂ after a high-voltage nanosecond discharge. Journal Physics D: Applied Physics, 2012, 45, 255202.	2.8	30
40	Plasma decay in the afterglow of a high-voltage nanosecond discharge in air. Plasma Physics Reports, 2012, 38, 179-186.	0.9	24
41	Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air. Plasma Physics Reports, 2010, 36, 90-98.	0.9	26
42	Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields. Journal Physics D: Applied Physics, 2010, 43, 255201.	2.8	209
43	Ignition with low-temperature plasma: Kinetic mechanism and experimental verification. High Energy Chemistry, 2009, 43, 213-218.	0.9	27
44	Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge. Plasma Physics Reports, 2009, 35, 867-882.	0.9	84
45	Low-energy electron attachment and detachment in vibrationally excited oxygen. Journal Physics D: Applied Physics, 2009, 42, 225210.	2.8	15
46	Numerical simulation of a surface barrier discharge in air. Plasma Physics Reports, 2008, 34, 594-608.	0.9	47
47	Initiation of high-voltage discharge in air by a plasma filament produced by an intense femtosecond laser pulse. Plasma Physics Reports, 2008, 34, 1059-1066.	0.9	13
48	Plasma decay in N2, CO2and H2O excited by high-voltage nanosecond discharge. Journal Physics D: Applied Physics, 2007, 40, 4493-4502.	2.8	53
49	The effect of a corona discharge on a lightning attachment. Plasma Physics Reports, 2005, 31, 75-91.	0.9	38
50	Experimental and Theoretical Study of a Quasi-Steady Electron-Beam Plasma in Hot Argon. Plasma Physics Reports, 2005, 31, 425.	0.9	17
51	The critical electric field in heated SF6. Plasma Physics Reports, 2003, 29, 161-165.	0.9	0
52	Evolution of the channel of a long leader in air after a sharp decrease in the discharge current. Plasma Physics Reports, 2003, 29, 220-225.	0.9	3
53	A Hydrodynamic Description of Electrons in a Space-Time Varying Electric Field. , 2002, , 179-198.		1
54	Corona discharge at the tip of a tall object in the electric field of a thundercloud. Plasma Physics Reports, 2002, 28, 953-964.	0.9	52

#	Article	IF	Citations
55	Plasma parameters in the channel of a long leader in air. Plasma Physics Reports, 2001, 27, 875-885.	0.9	22
56	Streamer breakdown of long gas gaps. Plasma Physics Reports, 2001, 27, 1057-1078.	0.9	15
57	Step propagation of a streamer in an electronegative gas. Journal of Experimental and Theoretical Physics, 2000, 91, 724-735.	0.9	19
58	Effect of continuous current during pauses between successive strokes on the decay of the lightning channel. Plasma Physics Reports, 2000, 26, 893-901.	0.9	31
59	Electron Distribution Function in a Nonideal Plasma in Strong Electric and Laser Fields. Contributions To Plasma Physics, 1999, 39, 93-96.	1.1	6
60	Ionization processes in spark discharge plasmas. Plasma Sources Science and Technology, 1999, 8, 285-294.	3.1	93
61	Kinetics of excitation and ionization in nonideal plasmas. Physics of Plasmas, 1998, 5, 2127-2129.	1.9	8
62	Electron rate coefficients in gases under non-uniform field and electron density conditions. Journal Physics D: Applied Physics, 1996, 29, 1476-1483.	2.8	27
63	Instability induced by electron transport in a weakly ionized plasma in E*H fields. Journal Physics D: Applied Physics, 1995, 28, 1072-1077.	2.8	9
64	Catalytic Halocarbon Decomposition in a Microwave Post-discharge. Plasma Chemistry and Plasma Processing, 1995, 15, 529-543.	2.4	2
65	Longitudinal diffusion of electrons in weakly ionized gas with Coulomb collisions. Journal Physics D: Applied Physics, 1991, 24, 2164-2169.	2.8	19
66	Three-body electron attachment to a molecule. Uspekhi Fizicheskikh Nauk, 1988, 31, 101-118.	0.3	45
67	Nonequilibrium Plasma Aerodynamics. , 0, , .		33