
Sandra Einloft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New polysulfone microcapsules containing metal oxides and ([BMIM][NTf2]) ionic liquid for CO2 capture. Journal of Environmental Chemical Engineering, 2021, 9, 104781.	3.3	26
2	SÃntese e caracterização de nanopartÃculas de óxido de ferro: Uma proposta de atividade experimental. Research, Society and Development, 2021, 10, e27310817184.	0.0	0
3	Basalt powder as a supplementary cementitious material in cement paste for CCS wells: chemical and mechanical resistance of cement formulations for CO2 geological storage sites. International Journal of Greenhouse Gas Control, 2021, 109, 103337.	2.3	13
4	CO2 sorption using encapsulated imidazolium-based fluorinated ionic liquids. Environmental Challenges, 2021, 4, 100109.	2.0	3
5	Performance of supported metal catalysts in the dimethyl carbonate production by direct synthesis using CO2 and methanol. Journal of CO2 Utilization, 2021, 53, 101721.	3.3	14
6	Synthetic talc as catalyst and filler for waterborne polyurethane-based nanocomposite synthesis. Polymer Bulletin, 2020, 77, 975-987.	1.7	15
7	Experimental-theoretical study of the epoxide structures effect on the CO2 conversion to cyclic carbonates catalyzed by hybrid titanate nanostructures. Journal of CO2 Utilization, 2020, 37, 20-28.	3.3	19
8	Dehydrating agent effect on the synthesis of dimethyl carbonate (DMC) directly from methanol and carbon dioxide. RSC Advances, 2020, 10, 34895-34902.	1.7	22
9	Polysulfone metal-activated carbon magnetic nanocomposites with enhanced CO ₂ capture. RSC Advances, 2020, 10, 34595-34604.	1.7	9
10	Imidazolium-based ionic liquid silica xerogel as catalyst to transform CO2 into cyclic carbonate. SN Applied Sciences, 2020, 2, 1.	1.5	8
11	Designing silica xerogels containing RTIL for CO2 capture and CO2/CH4 separation: Influence of ILs anion, cation and cation side alkyl chain length and ramification. Journal of Environmental Management, 2020, 268, 110340.	3.8	11
12	The influence of Ni/Mg content of synthetic Mg/Ni talc on mechanical and thermal properties of waterborne polyurethane nanocomposites. SN Applied Sciences, 2020, 2, 1.	1.5	5
13	Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica. Journal of Environmental Chemical Engineering, 2020, 8, 103740.	3.3	16
14	Metal activated carbon as an efficient filler for highâ€density polyethylene nanocomposites. Polymer Composites, 2020, 41, 3184-3193.	2.3	8
15	Mixtures of Cellulose Fibers from Pineapple Leaves, Ionic Liquid, and Alkanolamines for CO2 Capture. Fibers and Polymers, 2020, 21, 2861-2872.	1.1	4
16	Modified titanate nanotubes for the production of novel aliphatic polyurethane nanocomposites. Polymer Composites, 2019, 40, 2292-2300.	2.3	6
17	Supported ionic liquids as highly efficient and low-cost material for CO2/CH4 separation process. Heliyon, 2019, 5, e02183.	1.4	27
18	SYNTHESIS, CHARACTERIZATION AND in vitro CYTOTOXICITY OF Acacia mearnsii PROANTHOCYANIDIN LOADED PLGA MICROPARTICLES. Brazilian Journal of Chemical Engineering, 2019, 36, 239-250.	0.7	7

#	Article	IF	CITATIONS
19	Hybrid Ionic Liquid–Silica Xerogels Applied in CO2 Capture. Applied Sciences (Switzerland), 2019, 9, 2614.	1.3	16
20	DEVELOPMENT OF INEXPENSIVE CELLULOSE-BASED SORBENTS FOR CARBON DIOXIDE. Brazilian Journal of Chemical Engineering, 2019, 36, 511-521.	0.7	15
21	Polyurethaneâ€based poly (ionic liquid)s for CO ₂ removal from natural gas. Journal of Applied Polymer Science, 2019, 136, 47536.	1.3	16
22	Thermal, Mechanical, and Morphological Properties of DPU/Titanate Nanotubes Nanocomposites. Macromolecular Symposia, 2019, 383, 1800009.	0.4	0
23	A review of Ni and Co incorporation during talc synthesis: Applications to crystal chemistry, industrial compounds and natural Ni- and Co-rich ore. Journal of Geochemical Exploration, 2019, 200, 27-36.	1.5	7
24	Chemical fixation of CO2: the influence of linear amphiphilic anions on surface active ionic liquids (SAILs) as catalysts for synthesis of cyclic carbonates under solvent-free conditions. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 987-1001.	0.8	32
25	Evaluation of CO ₂ attack in wellbore class G cement: influence of epoxy resins, composites and minerals as additives. , 2019, 9, 1276-1287.		6
26	Harnessing CO2 into Carbonates Using Heterogeneous Waste Derivative Cellulose-Based Poly(ionic) Tj ETQq0 C) 0 rgBT /0	verlock 10 Tf
27	Performance of metal-functionalized rice husk cellulose for CO2 sorption and CO2/N2 separation. Fuel, 2019, 239, 737-746.	3.4	23
28	Enzymatic Degradation of the Rice Bran: Problem or Opportunity?. Waste and Biomass Valorization, 2019, 10, 755-762.	1.8	5
29	Weathering Resistance of Waterborne Polyurethane Coatings Reinforced with Silica from Rice Husk Ash. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20181190.	0.3	3
30	Imidazolium-based Ionic Liquids Impregnated in Silica and Alumina Supports for CO2 Capture. Materials Research, 2019, 22, .	0.6	11
31	Polyurethane/poly (Ionic Liquids) Cellulosic Composites and their Evaluation for Separation of CO2 from Natural Gas. Materials Research, 2019, 22, .	0.6	3
32	Polyurethane /Ionic Silica Xerogel Composites for CO2 Capture. Materials Research, 2019, 22, .	0.6	1
33	Influence of Alkaline Additives and Buffers on Mineral Trapping of CO ₂ under Mild Conditions. Chemical Engineering and Technology, 2018, 41, 573-579.	0.9	1
34	Waste derived MCMRH- supported IL for CO2/CH4 separation. Journal of Natural Gas Science and Engineering, 2018, 54, 54-64.	2.1	31
35	Synthetic talc as a new platform for producing fluorescent clay polyurethane nanocomposites. Applied Clay Science, 2018, 158, 37-45.	2.6	12
36	Surface Active Ionic Liquids as Catalyst for CO2 Conversion to Propylene Carbonate. Catalysis Letters, 2018, 148, 108-118.	1.4	51

3

#	Article	IF	CITATIONS
37	Cellulose based poly(ionic liquids): Tuning cation-anion interaction to improve carbon dioxide sorption. Fuel, 2018, 211, 76-86.	3.4	54
38	Chemical degradation of reinforced epoxy ement composites under CO ₂ â€rich environments. Polymer Composites, 2018, 39, E2234.	2.3	5
39	Analyzing the influence of different synthetic talcs in waterborne polyurethane nanocomposites obtainment. Journal of Applied Polymer Science, 2018, 135, 46107.	1.3	8
40	Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polymer Bulletin, 2018, 75, 1915-1930.	1.7	14
41	Hybrid Pu/Synthetic Talc/Organic Clay Ternary Nanocomposites: Thermal, Mechanical and Morphological Properties. Polymers and Polymer Composites, 2018, 26, 127-140.	1.0	8
42	Menthol-loaded PLGA Micro and Nanospheres: Synthesis, Characterization and Degradation in Artificial Saliva. Materials Research, 2018, 21, .	0.6	12
43	SÃntese e biodegradação em solo de copolÃmeros de PET-co-PLLA. Revista Materia, 2018, 23, .	0.1	0
44	SORÇÃ∱O DE CO2 UTILIZANDO LÃQUIDO IÔNICO ADITIVADO COM EXTENSORES DE ÃREA SUPERFICIAL. Quimica Nova, 2018, , .	0.3	2
45	lonic liquids composed of linear amphiphilic anions: Synthesis, physicochemical characterization, hydrophilicity and interaction with carbon dioxide. Journal of Molecular Liquids, 2017, 241, 64-73.	2.3	29
46	Multivariate Statistical Evaluation of Ionic Liquids Features for CO2 Capture. Energy Procedia, 2017, 114, 86-94.	1.8	4
47	Assessing Thermodynamic Data of CO2 capture by Ionic Liquids through Hard and Soft Base THeory. Energy Procedia, 2017, 114, 81-85.	1.8	2
48	Epoxy-modified Portland Cement: Effect of the Resin Hardener on the Chemical Degradation by Carbon Dioxide. Energy Procedia, 2017, 114, 5256-5265.	1.8	15
49	Hybrid Alkoxysilane-Functionalized Urethane-Imide-Based Poly(ionic liquids) as a New Platform for Carbon Dioxide Capture. Energy & Fuels, 2017, 31, 9840-9849.	2.5	27
50	New biocomposites based on castor oil polyurethane foams and ionic liquids for CO 2 capture. Fluid Phase Equilibria, 2017, 452, 103-112.	1.4	28
51	Chemical Conversion of CO2: Evaluation of Different Ionic Liquids as Catalysts in Dimethyl Carbonate Synthesis. Energy Procedia, 2017, 114, 7141-7149.	1.8	20
52	Thermal Behavior and Spectroscopy Analysis of Carbonized Nanostructures Derived from Polypyrrole Nanotubes. International Journal of Nanoscience, 2017, 16, 1750014.	0.4	2
53	Epoxy resin ement paste composite for wellbores: Evaluation of chemical degradation fostered carbon dioxide. , 2017, 7, 1065-1079.		8
54	CO2 conversion to propylene carbonate catalyzed by ionic liquid containing organosilane groups supported on titanate nanotubes/nanowires. Applied Catalysis A: General, 2017, 544, 46-54.	2.2	30

#	Article	IF	CITATIONS
55	Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage. , 2017, , 2197-2237.		3
56	Preparation and properties of aromatic polyester/TiO2 nanocomposites from polyethylene terephthalate. Materials Research, 2016, 19, 158-166.	0.6	13
57	Poly(ionic liquid)s Nanoparticles Applied in CO ₂ Capture. Macromolecular Symposia, 2016, 368, 98-106.	0.4	11
58	Preparation of Modified Titanate Nanotubes and Its Application in Polyurethane Nanocomposites. Macromolecular Symposia, 2016, 368, 93-97.	0.4	14
59	Anticorrosion Protection by Amine–Ionic Liquid Mixtures: Experiments and Simulations. Journal of Chemical & Engineering Data, 2016, 61, 1803-1810.	1.0	35
60	Greenhouse gases assessment of soybean cultivation steps in southern Brazil. Journal of Cleaner Production, 2016, 131, 747-753.	4.6	25
61	CO2 capture: Tuning cation-anion interaction in urethane based poly(ionic liquids). Polymer, 2016, 102, 199-208.	1.8	38
62	Comparing Different Synthetic Talc as Fillers for Polyurethane Nanocomposites. Macromolecular Symposia, 2016, 367, 136-142.	0.4	16
63	New cellulose based ionic compounds as low-cost sorbents for CO2 capture. Fuel Processing Technology, 2016, 149, 131-138.	3.7	39
64	Synthetic silico-metallic mineral particles (SSMMP) as nanofillers: comparing the effect of different hydrothermal treatments on the PU/SSMMP nanocomposites properties. Polymer Bulletin, 2015, 72, 2991-3006.	1.7	15
65	Synthetic Niâ€ŧalc as filler for producing polyurethane nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	1.3	28
66	Lower purity dimer acid based polyamides used as hot melt adhesives: synthesis and properties. Journal of Adhesion Science and Technology, 2015, 29, 1860-1872.	1.4	21
67	Rationalizing the role of the anion in CO ₂ capture and conversion using imidazolium-based ionic liquid modified mesoporous silica. RSC Advances, 2015, 5, 64220-64227.	1.7	53
68	New magnetic nanocomposites: Polyurethane/ Fe3O4-synthetic talc. European Polymer Journal, 2015, 69, 38-49.	2.6	30
69	A Rational Approach to CO ₂ Capture by Imidazolium Ionic Liquids: Tuning CO ₂ Solubility by Cation Alkyl Branching. ChemSusChem, 2015, 8, 1935-1946.	3.6	70
70	Life Cycle Inventory for the agricultural stages of soybean production in the state of Rio Grande do Sul, Brazil. Journal of Cleaner Production, 2015, 93, 65-74.	4.6	26
71	Biodiesel Production from High FFA Degummed Rice Bran Oil by a Two-Step Process Using Ethanol/Methanol and a Green Catalyst. Waste and Biomass Valorization, 2015, 6, 343-351.	1.8	12
72	A New Approach to CO2Capture and Conversion Using Imidazolium Based-Ionic Liquids as Sorbent and Catalyst. Journal of the Brazilian Chemical Society, 2014, , .	0.6	4

#	Article	IF	CITATIONS
73	Poly(ionic liquid)s as efficient catalyst in transformation of CO2 to cyclic carbonate. Journal of Molecular Catalysis A, 2014, 392, 83-88.	4.8	43
74	Synthesis and characterization of waterborne polyurethane/ZnO composites. Polymer Bulletin, 2014, 71, 829-838.	1.7	28
75	Syntheses and characterization of new poly(ionic liquid)s designed for CO2 capture. RSC Advances, 2014, 4, 18164.	1.7	43
76	Solvation of Carbon Dioxide in [C ₄ mim][BF ₄] and [C ₄ mim][PF ₆] Ionic Liquids Revealed by Highâ€Pressure NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 13024-13027.	7.2	59
77	Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polymer Bulletin, 2013, 70, 1819-1833.	1.7	50
78	Using different catalysts in the chemical recycling of waste from flexible polyurethane foams. Polimeros, 2013, 23, 608-613.	0.2	18
79	Optically transparent membrane based on bacterial cellulose/polycaprolactone. Polimeros, 2013, 23, 135-142.	0.2	43
80	Potencial uso de serpentinito no armazenamento mineral do CO2. Quimica Nova, 2013, 36, 773-777.	0.3	4
81	Dispositivos poliméricos cardiovasculares: comportamento termomecânico e viabilidade celular. Revista Materia, 2013, 18, 1313-1322.	0.1	1
82	Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage. , 2012, , 1405-1440.		14
83	CO2 storage with indirect carbonation using industrial waste. Energy Procedia, 2011, 4, 1010-1017.	1.8	49
84	Effect of time on the carbonation reaction of saline aquifers with controlled pH. Energy Procedia, 2011, 4, 4546-4551.	1.8	1
85	CO2 Geological storage in saline aquifers: Paraná Basin caprock and reservoir chemical reactivity. Energy Procedia, 2011, 4, 5377-5384.	1.8	22
86	Kinetic study of polyurethane synthesis using different catalytic systems of Fe, Cu, Sn, and Cr. Journal of Applied Polymer Science, 2010, 115, 1797-1802.	1.3	35
87	Human Alveolar Bone-Derived Cell-Culture Behaviour on Biodegradable Poly(L-lactic Acid). Journal of Biomaterials Science, Polymer Edition, 2009, 20, 167-179.	1.9	7
88	Strategies of biosynthesis of poly(3-hydroxybutyrate) supplemented with biodiesel obtained from rice bran oil. Materials Science and Engineering C, 2009, 29, 583-587.	3.8	9
89	Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Applied Geochemistry, 2009, 24, 760-767.	1.4	146
90	Ethylene polymerization catalyzed by diamide complexes of Ti(IV) and Zr(IV). Journal of Applied Polymer Science, 2008, 110, 270-275.	1.3	2

#	Article	IF	CITATIONS
91	Biodiesel from Rice Bran Oil: Transesterification by Tin Compounds. Energy & Fuels, 2008, 22, 671-674.	2.5	53
92	The use of crude tall oil as feed-stock for alkyd resins. E-Polymers, 2008, 8, .	1.3	3
93	Chemical synthesis andin vitro biocompatibility tests of poly (L-lactic acid). Journal of Biomedical Materials Research - Part A, 2007, 83A, 209-215.	2.1	32
94	Chemical recycling of post-consumer PET: Alkyd resins synthesis. Progress in Organic Coatings, 2006, 57, 123-127.	1.9	61
95	Supported dichlorobis(3-hydroxi-2-methyl-4-pyrone)Ti(IV) catalysts: Evaluation on ethylene polymerization. Journal of Molecular Catalysis A, 2005, 240, 61-61.	4.8	1

 $_{96}$ Synthesis and NMR characterization of aliphatic-aromatic copolyesters by reaction of poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{17}^{50}$

97	Zirconium alkoxide complexes as catalysts for ethylene polymerization. Journal of Molecular Catalysis A, 2004, 208, 285-290.	4.8	14
98	New metal catalysts for soybean oil transesterification. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 601-604.	0.8	88
99	TEREPHTHALIC ACID, NEOPENTYL GLYCOL AND TRIMETHYLOLPROPANE POLYESTERIFICATION USING VERSATILE AND HIGHLY EFFICIENT TIN COMPLEXES AS CATALYSTS PRECURSORS. Main Group Metal Chemistry, 2001, 24, .	0.6	4
100	Synthesis and characterization of new bivalent tin chelate of 3-hydroxy-2-methyl-4-pyrone and its use as catalyst for polyesterification. Polymer Bulletin, 2000, 45, 341-344.	1.7	14
101	Inversion of stereoselectivity in 1,3-butadiene polymerization with a niobium catalyst induced by a change in the solvent system. Polymer Bulletin, 1998, 41, 175-182.	1.7	9
102	Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1998, 95, 1626-1639.	0.2	368
103	Selective Catalytic Hydrodimerization of 1,3-Butadiene by Palladium Compounds Dissolved in Ionic Liquids. Organometallics, 1998, 17, 815-819.	1.1	296
104	Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts. Electrochimica Acta, 1997, 42, 2533-2535.	2.6	235
105	Two-phase catalytic hydrogenation of olefins by Ru(II) and Co(II) complexes dissolved in 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Inorganica Chimica Acta, 1997, 255, 207-209.	1.2	103
106	The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron, 1996, 15, 1217-1219.	1.0	701
107	Selective two-phase catalytic ethylene dimerization by Nill complexes/AlEtCl2 dissolved in organoaluminate ionic liquids. Polyhedron, 1996, 15, 3257-3259.	1.0	86
108	Catalytic Dimerization of Propene by Nickel-Phosphine Complexes in 1-Butyl-3-methylimidazolium Chloride/AlEtxCl3-x (x = 0, 1) Ionic Liquids. Industrial & Engineering Chemistry Research, 1995, 34, 1149-1155.	1.8	167

#	Article	IF	CITATIONS
109	CO ₂ Chemical Conversion Using Catalytics Systems Based on Titanate Nanotubes. Materials Science Forum, 0, 965, 13-20.	0.3	0
110	Poly(ionic liquid)s-based polyurethane blends: effect of polyols structure and ILs counter cations in CO2 sorption performance of PILs physical blends. Polymer Bulletin, 0, , 1.	1.7	1