
Gavin P Mcstay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833734/publications.pdf Version: 2024-02-01

CAVIN P MOSTAV

#	Article	IF	CITATIONS
1	Digital DNA lifecycle security and privacy: an overview. Briefings in Bioinformatics, 2022, 23, .	6.5	5
2	Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion, 2020, 50, 94-114.	3.4	40
3	Functions of Cytochrome c Oxidase Assembly Factors. International Journal of Molecular Sciences, 2020, 21, 7254.	4.1	29
4	MDM2 Integrates Cellular Respiration and Apoptotic Signaling through NDUFS1 and the Mitochondrial Network. Molecular Cell, 2019, 74, 452-465.e7.	9.7	43
5	Cox2p of yeast cytochrome oxidase assembles as a stand-alone subunit with the Cox1p and Cox3p modules. Journal of Biological Chemistry, 2018, 293, 16899-16911.	3.4	12
6	Regulation of Mitochondrial Dynamics by Proteolytic Processing and Protein Turnover. Antioxidants, 2018, 7, 15.	5.1	18
7	Complex formation and turnover of mitochondrial transporters and ion channels. Journal of Bioenergetics and Biomembranes, 2017, 49, 101-111.	2.3	6
8	In Vitro Use of Peptide Based Substrates and Inhibitors of Apoptotic Caspases. Methods in Molecular Biology, 2016, 1419, 57-67.	0.9	4
9	Identification of Oma1p Protease Sensitive Sites in Subunit 1 of Yeast Cytochrome Oxidase. FASEB Journal, 2015, 29, 565.6.	0.5	Ο
10	The Cox3p assembly module of yeast cytochrome oxidase. Molecular Biology of the Cell, 2014, 25, 965-976.	2.1	29
11	Measuring Apoptosis: Caspase Inhibitors and Activity Assays. Cold Spring Harbor Protocols, 2014, 2014, pdb.top070359.	0.3	25
12	Assembly of the Rotor Component of Yeast Mitochondrial ATP Synthase Is Enhanced When Atp9p Is Supplied by Atp9p-Cox6p Complexes. Journal of Biological Chemistry, 2014, 289, 31605-31616.	3.4	13
13	Detection of Caspase Activity Using Antibody-Based Techniques. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080291.	0.3	5
14	Identification of Active Caspases Using Affinity-Based Probes. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080309-pdb.prot080309.	0.3	2
15	Verification of a Putative Caspase Substrate. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080317.	0.3	2
16	Preparation of Cytosolic Extracts and Activation of Caspases by Cytochrome <i>c</i> . Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080275.	0.3	7
17	Assaying Caspase Activity In Vitro. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080283-pdb.prot080283.	0.3	4
18	Stabilization of Cox1p intermediates by the Cox14p–Coa3p complex. FEBS Letters, 2013, 587, 943-949.	2.8	15

GAVIN P MCSTAY

#	Article	IF	CITATIONS
19	Modular assembly of yeast cytochrome oxidase. Molecular Biology of the Cell, 2013, 24, 440-452.	2.1	56
20	Characterization of Assembly Intermediates Containing Subunit 1 of Yeast Cytochrome Oxidase. Journal of Biological Chemistry, 2013, 288, 26546-26556.	3.4	22
21	Mitochondrial pathway of apoptosis is ancestral in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4904-4909.	7.1	104
22	Sphingolipid Metabolism Cooperates with BAK and BAX to Promote the Mitochondrial Pathway of Apoptosis. Cell, 2012, 148, 988-1000.	28.9	377
23	Mitochondria and Cell Death. , 2011, , 37-43.		1
24	Turnover of ATP synthase subunits in F1 -depleted HeLa and yeast cells. FEBS Letters, 2011, 585, 2582-2586.	2.8	14
25	Characterization of Cytoplasmic Caspase-2 Activation by Induced Proximity. Molecular Cell, 2009, 35, 830-840.	9.7	131
26	Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death and Differentiation, 2008, 15, 322-331.	11.2	288
27	In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nature Cell Biology, 2006, 8, 72-77.	10.3	181
28	Connected to Death: The (Unexpurgated) Mitochondrial Pathway of Apoptosis. Science, 2005, 310, 66-67.	12.6	255
29	Sanglifehrin A Acts as a Potent Inhibitor of the Mitochondrial Permeability Transition and Reperfusion Injury of the Heart by Binding to Cyclophilin-D at a Different Site from Cyclosporin A. Journal of Biological Chemistry, 2002, 277, 34793-34799.	3.4	327
30	Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochemical Journal, 2002, 367, 541-548.	3.7	334
31	Sanglifehrin A - a new inhibitor of the mitochondrial permeability transition that protects heart from reperfusion injury. Journal of Molecular and Cellular Cardiology, 2002, 34, A17.	1.9	0
32	The permeability transition pore complex: another view. Biochimie, 2002, 84, 153-166.	2.6	650
33	Identification of critical cysteine residues whose oxidative cross-linking regulates the mitochondrial permeability transition pore. Biochemical Society Transactions, 2001, 29, A78-A78.	3.4	0
34	Muscle Atrophy Phenotype Gene Expression During Spaceflight Is Linked to a Metabolic Stress Crosstalk Between the Liver and the Muscle in Mice. SSRN Electronic Journal, 0, , .	0.4	0