Glenn G Kacprzak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833299/publications.pdf

Version: 2024-02-01

110 papers

5,388 citations

43 h-index 70 g-index

110 all docs

110 docs citations

110 times ranked 3082 citing authors

#	Article	IF	CITATIONS
1	Evolution of C iv Absorbers. II. Where Does C iv Live?. Astrophysical Journal, 2022, 924, 12.	1.6	6
2	The DUVET Survey: Resolved maps of star formation-driven outflows in a compact, starbursting disc galaxy. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5782-5796.	1.6	8
3	Spatial Distribution of O vi Covering Fractions in the Simulated Circumgalactic Medium. Astrophysical Journal, 2021, 907, 8.	1.6	3
4	Consistent Dynamical and Stellar Masses with Potential Light IMF in Massive Quiescent Galaxies at 3 & lt; z & lt; 4 Using Velocity Dispersions Measurements with MOSFIRE. Astrophysical Journal Letters, 2021, 908, L35.	3.0	16
5	Discovery of extremely low-metallicity circumgalactic gas at $\langle i \rangle z \langle j \rangle = 0.5$ towards Q0454â°'220. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5640-5657.	1.6	4
6	The DUVET Survey: Direct T _e -based Metallicity Mapping of Metal-enriched Outflows and Metal-poor Inflows in Markarian 1486. Astrophysical Journal Letters, 2021, 918, L16.	3.0	19
7	ZFIRE: The Beginning of the End for Massive Galaxies at z $\hat{a}^{1}/4$ 2 and Why Environment Matters. Astrophysical Journal, 2021, 919, 57.	1.6	4
8	Cloud-by-cloud, multiphase, Bayesian modelling: application to four weak, low-ionization absorbers. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2112-2139.	1.6	14
9	MOSEL: Strong [Oiii] 5007 \tilde{A} Emitting Galaxies at (3 < z < 4) from the ZFOURGE Survey. Astrophysical Journal, 2020, 898, 45.	1.6	16
10	Evidence for galaxy quenching in the green valley caused by a lack of a circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2289-2301.	1.6	6
11	ZFIRE: Measuring Electron Density with [O ii] as a Function of Environment at zÂ=Â1.62. Astrophysical Journal, 2020, 892, 77.	1.6	12
12	A giant galaxy in the young Universe with a massive ring. Nature Astronomy, 2020, 4, 957-964.	4.2	9
13	Disentangling the multiphase circumgalactic medium shared between a dwarf and a massive star-forming galaxy at $\langle i \rangle z \langle j \rangle \hat{a}^2 1/40.4$. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3987-3998.	1.6	7
14	Low-mass Group Environments Have No Substantial Impact on the Circumgalactic Medium Metallicity. Astronomical Journal, 2020, 159, 216.	1.9	4
15	Reconstructing the Observed Ionizing Photon Production Efficiency at z \hat{a}^4 2 Using Stellar Population Models. Astrophysical Journal, 2020, 889, 180.	1.6	14
16	MOSEL Survey: Tracking the Growth of Massive Galaxies at 2Â<ÂzÂ<Â4 Using Kinematics and the IllustrisTNG Simulation. Astrophysical Journal, 2020, 893, 23.	1.6	5
17	Mg ii Absorbers in High-resolution Quasar Spectra. I. Voigt Profile Models. Astrophysical Journal, 2020, 904, 28.	1.6	9
18	Evolution of C iv Absorbers. I. The Cosmic Incidence. Astrophysical Journal, 2020, 904, 44.	1.6	17

#	Article	IF	CITATIONS
19	The CGM at Cosmic Noon with KCWI: Outflows from a Star-forming Galaxy at zÂ=Â2.071. Astrophysical Journal, 2020, 904, 164.	1.6	13
20	Kinematics of Circumgalactic Gas: Feeding Galaxies and Feedback. Astrophysical Journal, 2019, 878, 84.	1.6	68
21	lo's Volcanic Activity from Time Domain Adaptive Optics Observations: 2013–2018. Astronomical Journal, 2019, 158, 29.	1.9	32
22	The Relation between Galaxy ISM and Circumgalactic O vi Gas Kinematics Derived from Observations and $\hat{\nu}$ CDM Simulations. Astrophysical Journal, 2019, 870, 137.	1.6	25
23	A Tale of Two Clusters: An Analysis of Gas-phase Metallicity and Nebular Gas Conditions in Proto-cluster Galaxies at zÂâ°1⁄4Â2. Astrophysical Journal, 2019, 883, 153.	1.6	8
24	The Relationship between Galaxy ISM and Circumgalactic Gas Metallicities. Astrophysical Journal, 2019, 886, 91.	1.6	33
25	The UVES Spectral Quasar Absorption Database (SQUAD) data release 1: the first 10 million seconds. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3458-3479.	1.6	59
26	Relationship between the Metallicity of the Circumgalactic Medium and Galaxy Orientation. Astrophysical Journal, 2019, 883, 78.	1.6	39
27	Kinematics of the O vi Circumgalactic Medium: Halo Mass Dependence and Outflow Signatures. Astrophysical Journal, 2019, 886, 66.	1.6	12
28	The Effects of Environment on the Evolution of the Galaxy Stellar Mass Function. Astrophysical Journal, 2018, 854, 30.	1.6	55
29	MAGiiCAT VI. The Mg ii Intragroup Medium Is Kinematically Complex. Astrophysical Journal, 2018, 869, 153.	1.6	43
30	ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1Â<ÂzÂ<Â4 ^{â^—} . Astrophysical Journal, 2018, 863, 131.	1.6	24
31	zfourge: Extreme 5007 Ã Emission May Be a Common Early-lifetime Phase for Star-forming Galaxies at zÂ>Â2.5. Astrophysical Journal, 2018, 869, 141.	1.6	13
32	First Data Release of the COSMOS Lyα Mapping and Tomography Observations: 3D Lyα Forest Tomography at 2.05Â<Â2Â<Â2.55. Astrophysical Journal, Supplement Series, 2018, 237, 31.	3.0	80
33	ZFIRE: 3D Modeling of Rotation, Dispersion, and Angular Momentum of Star-forming Galaxies at z \hat{a}^4 2. Astrophysical Journal, 2018, 858, 47.	1.6	16
34	Observational signatures of a warped disk associated with cold-flow accretion. Monthly Notices of the Royal Astronomical Society, 2018, 474, 254-270.	1.6	42
35	Understanding the strong intervening O vi absorber at zabsÂâ^1⁄4Â0.93 towards PG1206+459. Monthly Notic of the Royal Astronomical Society, 2018, 476, 2258-2277.	es 1.6	23
36	Decoupled black hole accretion and quenching: the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since zÂ=Â2.5. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3710-3716.	1.6	4

#	Article	IF	CITATIONS
37	THE HIGHLY IONIZED CIRCUMGALACTIC MEDIUM IS KINEMATICALLY UNIFORM AROUND GALAXIES. Astrophysical Journal, 2017, 834, 148.	1.6	24
38	Quasars Probing Galaxies. I. Signatures of Gas Accretion at Redshift z â‰^ 0.2â^— â€. Astrophysical Journal, 2017, 835, 267.	1.6	81
39	ZFIRE: The Evolution of the Stellar Mass Tully–Fisher Relation to Redshift â^¼2.2. Astrophysical Journal, 2017, 839, 57.	1.6	26
40	A massive, quiescent galaxy at a redshift of 3.717. Nature, 2017, 544, 71-74.	13.7	167
41	The Impact of the Group Environment on the O vi Circumgalactic Medium. Astrophysical Journal, 2017, 844, 23.	1.6	28
42	Discovery of Extreme [O iii]+ $H\hat{l}^2$ Emitting Galaxies Tracing an Overdensity at z \hat{a}^4 3.5 in CDF-South(sup) \hat{a}^- (sup). Astrophysical Journal Letters, 2017, 838, L12.	3.0	32
43	The Size Evolution of Star-forming Galaxies since zÂâ^1/4Â7 Using ZFOURGE. Astrophysical Journal Letters, 2017, 834, L11.	3.0	57
44	ZFIRE: SIMILAR STELLAR GROWTH IN Hα-EMITTING CLUSTER AND FIELD GALAXIES AT z $\hat{a}^{1/4}$ 2. Astrophysical Journal, 2017, 834, 101.	1.6	14
45	ZFIRE: using Hα equivalent widths to investigate the in situ initial mass function at zÂâ ¹ /4Â2. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3071-3108.	1.6	19
46	Gas Accretion in Star-Forming Galaxies. Astrophysics and Space Science Library, 2017, , 145-165.	1.0	17
47	Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 [*] . Astrophysical Journal, 2017, 847, 134.	1.6	106
48	ZFIRE: A KECK/MOSFIRE SPECTROSCOPIC SURVEY OF GALAXIES IN RICH ENVIRONMENTS AT z $\hat{a}^{1}/4$ 2. Astrophysical Journal, 2016, 828, 21.	1.6	53
49	DIFFERENCES IN THE STRUCTURAL PROPERTIES AND STAR FORMATION RATES OF FIELD AND CLUSTER GALAXIES AT Z \hat{a}^{1} /4 1. Astrophysical Journal, 2016, 826, 60.	1.6	17
50	SATELLITE QUENCHING AND GALACTIC CONFORMITY AT 0.3 < z < 2.5*. Astrophysical Journal, 2016, 817, 9.	1.6	50
51	THE SFR–M _* RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 < z < 4*. Astrophysical Journal, 2016, 817, 118.	1.6	241
52	HST Observations Reveal the Curious Geometry of Circumgalactic Gas. Proceedings of the International Astronomical Union, 2016, 11, 342-344.	0.0	0
53	Gas Kinematics in the Multiphase Circumgalactic Medium. Proceedings of the International Astronomical Union, 2016, 11, 345-347.	0.0	0
54	ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z $\hat{a}^{1}/4$ 2. Astrophysical Journal Letters, 2016, 825, L2.	3.0	14

#	Article	IF	CITATIONS
55	LARGE-SCALE STRUCTURE AROUND A z = 2.1 CLUSTER. Astrophysical Journal, 2016, 826, 130.	1.6	38
56	MAGIICAT IV. KINEMATICS OF THE CIRCUMGALACTIC MEDIUM AND EVIDENCE FOR QUIESCENT EVOLUTION AROUND RED GALAXIES. Astrophysical Journal, 2016, 818, 171.	1.6	26
57	MOLECULAR HYDROGEN ABSORPTION FROM THE HALO OF A z â^1/4 0.4 GALAXY. Astrophysical Journal, 2016, 823, 66.	1.6	31
58	THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO zÂâ^1/4Â3.5*. Astrophysical Journal, 2016, 830, 51.	1.6	166
59	Radio galaxies in ZFOURGE/NMBS: no difference in the properties of massive galaxies with and without radio-AGN out to <i>z</i> Â=Â2.25. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2731-2744.	1.6	22
60	UV TO IR LUMINOSITIES AND DUST ATTENUATION DETERMINED FROM â ¹ / ₄ 4000 K-SELECTED GALAXIES AT 1 & lt; & lt; 3 IN THE ZFOURGE SURVEY*. Astrophysical Journal Letters, 2016, 818, L26.	³ Z _{3.0}	27
61	ZFOURGE catalogue of AGN candidates: an enhancement of $160 \cdot \hat{l}/4$ m-derived star formation rates in active galaxies to <i>z</i> \hat{l} i> \hat{A} = \hat{A} 3.2. Monthly Notices of the Royal Astronomical Society, 2016, 457, 629-641.	1.6	45
62	Z-FIRE: ISM PROPERTIES OF THE <i>z</i> = 2.095 COSMOS CLUSTER. Astrophysical Journal, 2016, 819, 100.	1.6	25
63	COLD-MODE ACCRETION: DRIVING THE FUNDAMENTAL MASS–METALLICITY RELATION AT zÂâ^⅓Â2. Astrophys Journal Letters, 2016, 826, L11.	sical 3.0	45
64	THE AZIMUTHAL DEPENDENCE OF OUTFLOWS AND ACCRETION DETECTED USING O vi ABSORPTION. Astrophysical Journal, 2015, 815, 22.	1.6	69
65	THE ABSENCE OF AN ENVIRONMENTAL DEPENDENCE IN THE MASS–METALLICITY RELATION AT <i>z</i> = 2. Astrophysical Journal Letters, 2015, 802, L26.	3.0	58
66	AN EXTREME METALLICITY, LARGE-SCALE OUTFLOW FROM A STAR-FORMING GALAXY AT < i>z < /i> $\hat{a}^{1}/4$ 0.4. Astrophysical Journal, 2015, 811, 132.	1.6	71
67	MAGIICAT V. ORIENTATION OF OUTFLOWS AND ACCRETION DETERMINE THE KINEMATICS AND COLUMN DENSITIES OF THE CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2015, 812, 83.	1.6	65
68	THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT <i>z</i> â^¼ 4 WITH ZFOURGE AND CANDELS. Astrophysical Journal Letters, 2015, 808, L29.	3.0	64
69	ZFIRE: GALAXY CLUSTER KINEMATICS, $H < i > \hat{l} \pm < / i > STAR$ FORMATION RATES, AND GAS PHASE METALLICITIES OF XMM-LSS J02182-05102 AT $\{z\}_{mathrm{cl}}=1.6233$ \$. Astrophysical Journal, 2015, 811, 28.	1.6	54
70	ZFOURGE/CANDELS: ON THE EVOLUTION OF < i> M < /i> * GALAXY PROGENITORS FROM < i> z < /i> = 3 TO 0.5. Astrophysical Journal, 2015, 803, 26.	1.6	104
71	Probing the circumgalactic medium of active galactic nuclei with background quasars. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2861-2869.	1.6	4
72	DIRECT INSIGHTS INTO OBSERVATIONAL ABSORPTION LINE ANALYSIS METHODS OF THE CIRCUMGALACTIC MEDIUM USING COSMOLOGICAL SIMULATIONS. Astrophysical Journal, 2015, 802, 10.	1.6	42

#	Article	IF	CITATIONS
7 3	THE DIFFERENTIAL SIZE GROWTH OF FIELD AND CLUSTER GALAXIES AT <i>z</i> = 2.1 USING THE ZFOURGE SURVEY. Astrophysical Journal, 2015, 806, 3.	1.6	31
74	DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT $z=1.62$. Publications of the Korean Astronomical Society, 2015, 30, 389-392.	0.1	0
75	KECK/MOSFIRE SPECTROSCOPIC CONFIRMATION OF A VIRGO-LIKE CLUSTER ANCESTOR AT $\langle i \rangle z \langle j \rangle = 2.095$. Astrophysical Journal Letters, 2014, 795, L20.	3.0	63
76	THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < <i>z</i> < 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY. Astrophysical Journal, 2014, 792, 103.	1.6	24
77	Ly- \hat{l}_{\pm} and Mg II as Probes of Galaxies and Their Environment. Publications of the Astronomical Society of the Pacific, 2014, 126, 969-1009.	1.0	23
78	GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE <i>z</i> = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES. Astrophysical Journal, 2014, 783, 85.	1.6	350
79	ABSORPTION-LINE DETECTIONS OF 10 ⁵ -10 ⁶ K GAS IN SPIRAL-RICH GROUPS OF GALAXIES. Astrophysical Journal, 2014, 791, 128.	1.6	56
80	EXPLORING THE <i>z</i> = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES. Astrophysical Journal Letters, 2014, 787, L36.	3.0	80
81	HALO MASS DEPENDENCE OF H I AND O VI ABSORPTION: EVIDENCE FOR DIFFERENTIAL KINEMATICS. Astrophysical Journal, 2014, 792, 128.	1.6	23
82	A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT $\langle i \rangle z \langle i \rangle$ â 1 /4 4 FROM ZFOURGE. Astrophysical Journal Letters, 2014, 783, L14.	3.0	171
83	MODELING THE DISTRIBUTION OF Mg II ABSORBERS AROUND GALAXIES USING BACKGROUND GALAXIES AND QUASARS. Astrophysical Journal, 2014, 784, 108.	1.6	62
84	NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION. Astrophysical Journal Letters, 2014, 792, L12.	3.0	63
85	DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT $\langle i \rangle z \langle j \rangle = 1.62$. Astrophysical Journal Letters, 2014, 789, L31.	3.0	16
86	Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3. Science, 2013, 341, 50-53.	6.0	186
87	THE SELF-SIMILARITY OF THE CIRCUMGALACTIC MEDIUM WITH GALAXY VIRIAL MASS: IMPLICATIONS FOR COLD-MODE ACCRETION. Astrophysical Journal Letters, 2013, 763, L42.	3.0	41
88	MAGIICAT II. GENERAL CHARACTERISTICS OF THE Mg II ABSORBING CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2013, 776, 115.	1.6	107
89	MAGIICAT I. THE Mg II ABSORBER-GALAXY CATALOG. Astrophysical Journal, 2013, 776, 114.	1.6	83
90	MAGIICAT III. INTERPRETING SELF-SIMILARITY OF THE CIRCUMGALACTIC MEDIUM WITH VIRIAL MASS USING Mg II ABSORPTION. Astrophysical Journal, 2013, 779, 87.	1.6	51

#	Article	IF	CITATIONS
91	DISCOVERY OF LYMAN BREAK GALAXIES AT <i>>z</i> >â^¼ 7 FROM THE zFourGE SURVEY. Astrophysical Journal, 2013, 768, 56.	1.6	40
92	THE SMOOTH Mg II GAS DISTRIBUTION THROUGH THE INTERSTELLAR/EXTRA-PLANAR/HALO INTERFACE. Astrophysical Journal Letters, 2013, 777, L11.	3.0	20
93	FIRST RESULTS FROM <i>Z</i> â€"FOURGE: DISCOVERY OF A CANDIDATE CLUSTER AT <i>z</i> = 2.2 IN COSMOS. Astrophysical Journal Letters, 2012, 748, L21.	3.0	104
94	Discovery of multiphase cold accretion in a massive galaxy at $z=0.7$. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3029-3043.	1.6	49
95	QUENCHED COLD ACCRETION OF A LARGE-SCALE METAL-POOR FILAMENT DUE TO VIRIAL SHOCKING IN THE HALO OF A MASSIVE (i>z	1.6	35
96	TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION. Astrophysical Journal Letters, 2012, 760, L7.	3.0	165
97	Physical properties of galactic winds using background quasars. Monthly Notices of the Royal Astronomical Society, 2012, 426, 801-815.	1.6	206
98	HALO GAS AND GALAXY DISK KINEMATICS OF A VOLUME-LIMITED SAMPLE OF Mg II ABSORPTION-SELECTED GALAXIES AT <i>z</i> j>a^1/4 0.1. Astrophysical Journal, 2011, 733, 105.	1.6	65
99	The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2601-2623.	1.6	86
100	Morphological properties ofâ€,zâ^¼ 0.5 absorption-selected galaxies: the role of galaxy inclination. Monthly Notices of the Royal Astronomical Society, 2011, 416, 3118-3137.	1.6	86
101	The Pristine Universe. Science, 2011, 334, 1216-1217.	6.0	1
102	THE H I MASS DENSITY IN GALACTIC HALOS, WINDS, AND COLD ACCRETION AS TRACED BY Mg II ABSORPTION. Astrophysical Journal Letters, 2011, 743, L34.	3.0	28
103	HALO GAS AND GALAXY DISK KINEMATICS DERIVED FROM OBSERVATIONS AND Î-CDM SIMULATIONS OF Mg II ABSORPTION-SELECTED GALAXIES AT INTERMEDIATE REDSHIFT. Astrophysical Journal, 2010, 711, 533-558.	1.6	106
104	Galaxy group at z =0.3 associated with the damped Lyman \hat{l}_{\pm} system towards quasar Q1127-145. Monthly Notices of the Royal Astronomical Society, 2010, 406, 445-459.	1.6	57
105	HALO GAS CROSS SECTIONS AND COVERING FRACTIONS OF Mg II ABSORPTION SELECTED GALAXIES. Astronomical Journal, 2008, 135, 922-927.	1.9	116
106	A Correlation between Galaxy Morphology and MgiiHalo Absorption Strength. Astrophysical Journal, 2007, 662, 909-922.	1.6	49
107	On the Heterogeneity of Metalâ€Line and Lyα Absorption in Galaxy "Halos―atzâ^⅓ 0.7. Astrophysical Journa 2007, 661, 714-718.	ll, 1.6	22
108	Models of Five Absorptionâ€Line Systems along the Line of Sight Toward PG 0117+213. Astrophysical Journal, 2005, 623, 57-78.	1.6	28

#	Article	IF	CITATIONS
109	MgII absorption through intermediate redshift galaxies. Proceedings of the International Astronomical Union, 2005, 1, 24-41.	0.0	31
110	Galaxy morphology – halo gas connections. Proceedings of the International Astronomical Union, 2005, 1, 80-85.	0.0	0