Glenn G Kacprzak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE <i>z</i> = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES. Astrophysical Journal, 2014, 783, 85.	1.6	350
2	THE SFR–M _* RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 < z < 4*. Astrophysical Journal, 2016, 817, 118.	1.6	241
3	Physical properties of galactic winds using background quasars. Monthly Notices of the Royal Astronomical Society, 2012, 426, 801-815.	1.6	206
4	Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3. Science, 2013, 341, 50-53.	6.0	186
5	A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT <i>z</i> â ¹ /4 4 FROM ZFOURGE. Astrophysical Journal Letters, 2014, 783, L14.	3.0	171
6	A massive, quiescent galaxy at a redshift of 3.717. Nature, 2017, 544, 71-74.	13.7	167
7	THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO zÂâ°1⁄4Â3.5*. Astrophysical Journal, 2016, 830, 51.	1.6	166
8	TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION. Astrophysical Journal Letters, 2012, 760, L7.	3.0	165
9	HALO GAS CROSS SECTIONS AND COVERING FRACTIONS OF Mg II ABSORPTION SELECTED GALAXIES. Astronomical Journal, 2008, 135, 922-927.	1.9	116
10	MAGIICAT II. GENERAL CHARACTERISTICS OF THE Mg II ABSORBING CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2013, 776, 115.	1.6	107
11	HALO GAS AND GALAXY DISK KINEMATICS DERIVED FROM OBSERVATIONS AND Î>CDM SIMULATIONS OF Mg II ABSORPTION-SELECTED GALAXIES AT INTERMEDIATE REDSHIFT. Astrophysical Journal, 2010, 711, 533-558.	1.6	106
12	Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 [*] . Astrophysical Journal, 2017, 847, 134.	1.6	106
13	FIRST RESULTS FROM <i>Z</i> –FOURGE: DISCOVERY OF A CANDIDATE CLUSTER AT <i>z</i> = 2.2 IN COSMOS. Astrophysical Journal Letters, 2012, 748, L21.	3.0	104
14	ZFOURGE/CANDELS: ON THE EVOLUTION OF <i>M</i> * GALAXY PROGENITORS FROM <i>z</i> = 3 TO 0.5. Astrophysical Journal, 2015, 803, 26.	1.6	104
15	The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2601-2623.	1.6	86
16	Morphological properties ofâ€,zâ^¼ 0.5 absorption-selected galaxies: the role of galaxy inclination. Monthly Notices of the Royal Astronomical Society, 2011, 416, 3118-3137.	1.6	86
17	MAGIICAT I. THE Mg II ABSORBER-GALAXY CATALOG. Astrophysical Journal, 2013, 776, 114.	1.6	83
18	Quasars Probing Galaxies. I. Signatures of Gas Accretion at Redshift z â‰^ 0.2â^— â€. Astrophysical Journal, 2017, 835, 267.	1.6	81

#	Article	IF	CITATIONS
19	EXPLORING THE <i>z</i> = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES. Astrophysical Journal Letters, 2014, 787, L36.	3.0	80
20	First Data Release of the COSMOS Lyα Mapping and Tomography Observations: 3D Lyα Forest Tomography at 2.05Â<ÂzÂ<Â2.55. Astrophysical Journal, Supplement Series, 2018, 237, 31.	3.0	80
21	AN EXTREME METALLICITY, LARGE-SCALE OUTFLOW FROM A STAR-FORMING GALAXY AT <i>z</i> à ¹ /4 0.4. Astrophysical Journal, 2015, 811, 132.	1.6	71
22	THE AZIMUTHAL DEPENDENCE OF OUTFLOWS AND ACCRETION DETECTED USING O vi ABSORPTION. Astrophysical Journal, 2015, 815, 22.	1.6	69
23	Kinematics of Circumgalactic Gas: Feeding Galaxies and Feedback. Astrophysical Journal, 2019, 878, 84.	1.6	68
24	HALO GAS AND GALAXY DISK KINEMATICS OF A VOLUME-LIMITED SAMPLE OF Mg II ABSORPTION-SELECTED GALAXIES AT <i>z</i>	1.6	65
25	MAGIICAT V. ORIENTATION OF OUTFLOWS AND ACCRETION DETERMINE THE KINEMATICS AND COLUMN DENSITIES OF THE CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2015, 812, 83.	1.6	65
26	THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT <i>z</i> â^¼ 4 WITH ZFOURGE AND CANDELS. Astrophysical Journal Letters, 2015, 808, L29.	3.0	64
27	KECK/MOSFIRE SPECTROSCOPIC CONFIRMATION OF A VIRGO-LIKE CLUSTER ANCESTOR AT <i>z</i> = 2.095. Astrophysical Journal Letters, 2014, 795, L20.	3.0	63
28	NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION. Astrophysical Journal Letters, 2014, 792, L12.	3.0	63
29	MODELING THE DISTRIBUTION OF Mg II ABSORBERS AROUND GALAXIES USING BACKGROUND GALAXIES AND QUASARS. Astrophysical Journal, 2014, 784, 108.	1.6	62
30	The UVES Spectral Quasar Absorption Database (SQUAD) data release 1: the first 10 million seconds. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3458-3479.	1.6	59
31	THE ABSENCE OF AN ENVIRONMENTAL DEPENDENCE IN THE MASS–METALLICITY RELATION AT <i>z</i> = 2. Astrophysical Journal Letters, 2015, 802, L26.	3.0	58
32	Galaxy group at z=0.3 associated with the damped Lyman α system towards quasar Q1127-145. Monthly Notices of the Royal Astronomical Society, 2010, 406, 445-459.	1.6	57
33	The Size Evolution of Star-forming Galaxies since zÂâ^¼Â7 Using ZFOURGE. Astrophysical Journal Letters, 2017, 834, L11.	3.0	57
34	ABSORPTION-LINE DETECTIONS OF 10 ⁵ -10 ⁶ K GAS IN SPIRAL-RICH GROUPS OF GALAXIES. Astrophysical Journal, 2014, 791, 128.	1.6	56
35	The Effects of Environment on the Evolution of the Galaxy Stellar Mass Function. Astrophysical Journal, 2018, 854, 30.	1.6	55
36	ZFIRE: GALAXY CLUSTER KINEMATICS, H <i>α</i> STAR FORMATION RATES, AND GAS PHASE METALLICITIES OF XMM-LSS J02182-05102 AT \${z}_{mathrm{cl}}=1.6233\$. Astrophysical Journal, 2015, 811, 28.	1.6	54

#	Article	IF	CITATIONS
37	ZFIRE: A KECK/MOSFIRE SPECTROSCOPIC SURVEY OF GALAXIES IN RICH ENVIRONMENTS AT z â^1/4 2. Astrophysical Journal, 2016, 828, 21.	1.6	53
38	MAGIICAT III. INTERPRETING SELF-SIMILARITY OF THE CIRCUMGALACTIC MEDIUM WITH VIRIAL MASS USING Mg II ABSORPTION. Astrophysical Journal, 2013, 779, 87.	1.6	51
39	SATELLITE QUENCHING AND GALACTIC CONFORMITY AT 0.3 < z < 2.5*. Astrophysical Journal, 2016, 817, 9.	1.6	50
40	A Correlation between Galaxy Morphology and MgiiHalo Absorption Strength. Astrophysical Journal, 2007, 662, 909-922.	1.6	49
41	Discovery of multiphase cold accretion in a massive galaxy at $z = 0.7$. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3029-3043.	1.6	49
42	ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to <i>z</i> Â=Â3.2. Monthly Notices of the Royal Astronomical Society, 2016, 457, 629-641.	1.6	45
43	COLD-MODE ACCRETION: DRIVING THE FUNDAMENTAL MASS–METALLICITY RELATION AT zÂâ^¼Â2. Astrophys Journal Letters, 2016, 826, L11.	ical 3.0	45
44	MAGiiCAT VI. The Mg ii Intragroup Medium Is Kinematically Complex. Astrophysical Journal, 2018, 869, 153.	1.6	43
45	DIRECT INSIGHTS INTO OBSERVATIONAL ABSORPTION LINE ANALYSIS METHODS OF THE CIRCUMGALACTIC MEDIUM USING COSMOLOGICAL SIMULATIONS. Astrophysical Journal, 2015, 802, 10.	1.6	42
46	Observational signatures of a warped disk associated with cold-flow accretion. Monthly Notices of the Royal Astronomical Society, 2018, 474, 254-270.	1.6	42
47	THE SELF-SIMILARITY OF THE CIRCUMGALACTIC MEDIUM WITH GALAXY VIRIAL MASS: IMPLICATIONS FOR COLD-MODE ACCRETION. Astrophysical Journal Letters, 2013, 763, L42.	3.0	41
48	DISCOVERY OF LYMAN BREAK GALAXIES AT <i>z</i> â^¼ 7 FROM THE zFourGE SURVEY. Astrophysical Journal, 2013, 768, 56.	1.6	40
49	Relationship between the Metallicity of the Circumgalactic Medium and Galaxy Orientation. Astrophysical Journal, 2019, 883, 78.	1.6	39
50	LARGE-SCALE STRUCTURE AROUND A $z = 2.1$ CLUSTER. Astrophysical Journal, 2016, 826, 130.	1.6	38
51	QUENCHED COLD ACCRETION OF A LARGE-SCALE METAL-POOR FILAMENT DUE TO VIRIAL SHOCKING IN THE HALO OF A MASSIVE <i>z</i>	1.6	35
52	The Relationship between Galaxy ISM and Circumgalactic Gas Metallicities. Astrophysical Journal, 2019, 886, 91.	1.6	33
53	Discovery of Extreme [O iii]+Hβ Emitting Galaxies Tracing an Overdensity at z â^¼ 3.5 in CDF-South ^{â^—} . Astrophysical Journal Letters, 2017, 838, L12.	3.0	32
54	Io's Volcanic Activity from Time Domain Adaptive Optics Observations: 2013–2018. Astronomical Journal. 2019. 158. 29.	1.9	32

#	Article	IF	CITATIONS
55	MgII absorption through intermediate redshift galaxies. Proceedings of the International Astronomical Union, 2005, 1, 24-41.	0.0	31
56	THE DIFFERENTIAL SIZE GROWTH OF FIELD AND CLUSTER GALAXIES AT <i>z</i> = 2.1 USING THE ZFOURGE SURVEY. Astrophysical Journal, 2015, 806, 3.	1.6	31
57	MOLECULAR HYDROGEN ABSORPTION FROM THE HALO OF A z â^1⁄4 0.4 GALAXY. Astrophysical Journal, 2016, 823, 66.	1.6	31
58	Models of Five Absorption‣ine Systems along the Line of Sight Toward PG 0117+213. Astrophysical Journal, 2005, 623, 57-78.	1.6	28
59	The Impact of the Group Environment on the O vi Circumgalactic Medium. Astrophysical Journal, 2017, 844, 23.	1.6	28
60	THE H I MASS DENSITY IN GALACTIC HALOS, WINDS, AND COLD ACCRETION AS TRACED BY Mg II ABSORPTION. Astrophysical Journal Letters, 2011, 743, L34.	3.0	28
61	UV TO IR LUMINOSITIES AND DUST ATTENUATION DETERMINED FROM â^1⁄44000 K-SELECTED GALAXIES AT 1 < < 3 IN THE ZFOURGE SURVEY*. Astrophysical Journal Letters, 2016, 818, L26.	z 3.0	27
62	MAGIICAT IV. KINEMATICS OF THE CIRCUMGALACTIC MEDIUM AND EVIDENCE FOR QUIESCENT EVOLUTION AROUND RED GALAXIES. Astrophysical Journal, 2016, 818, 171.	1.6	26
63	ZFIRE: The Evolution of the Stellar Mass Tully–Fisher Relation to Redshift â^¼2.2. Astrophysical Journal, 2017, 839, 57.	1.6	26
64	The Relation between Galaxy ISM and Circumgalactic O vi Gas Kinematics Derived from Observations and Ĵ›CDM Simulations. Astrophysical Journal, 2019, 870, 137.	1.6	25
65	Z-FIRE: ISM PROPERTIES OF THE <i>z</i> = 2.095 COSMOS CLUSTER. Astrophysical Journal, 2016, 819, 100.	1.6	25
66	THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < <i>z</i> < 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY. Astrophysical Journal, 2014, 792, 103.	1.6	24
67	THE HIGHLY IONIZED CIRCUMGALACTIC MEDIUM IS KINEMATICALLY UNIFORM AROUND GALAXIES. Astrophysical Journal, 2017, 834, 148.	1.6	24
68	ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1Â<ÂzÂ<Â4 ^{â^—} . Astrophysical Journal, 2018, 863, 131.	1.6	24
69	Ly-α and Mg II as Probes of Galaxies and Their Environment. Publications of the Astronomical Society of the Pacific, 2014, 126, 969-1009.	1.0	23
70	HALO MASS DEPENDENCE OF H I AND O VI ABSORPTION: EVIDENCE FOR DIFFERENTIAL KINEMATICS. Astrophysical Journal, 2014, 792, 128.	1.6	23
71	Understanding the strong intervening O vi absorber at zabsÂâ^1⁄4Â0.93 towards PG1206+459. Monthly Notic of the Royal Astronomical Society, 2018, 476, 2258-2277.	ces 1.6	23
72	On the Heterogeneity of Metal‣ine and Lyα Absorption in Galaxy "Halos―atzâ^1⁄4 0.7. Astrophysical Journa 2007, 661, 714-718.	al, 1.6	22

#	Article	IF	CITATIONS
73	Radio galaxies in ZFOURGE/NMBS: no difference in the properties of massive galaxies with and without radio-AGN out to <i>z</i> Â=Â2.25. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2731-2744.	1.6	22
74	THE SMOOTH Mg II GAS DISTRIBUTION THROUGH THE INTERSTELLAR/EXTRA-PLANAR/HALO INTERFACE. Astrophysical Journal Letters, 2013, 777, L11.	3.0	20
75	ZFIRE: using Hα equivalent widths to investigate the in situ initial mass function at zÂâ^¼Â2. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3071-3108.	1.6	19
76	The DUVET Survey: Direct T _e -based Metallicity Mapping of Metal-enriched Outflows and Metal-poor Inflows in Markarian 1486. Astrophysical Journal Letters, 2021, 918, L16.	3.0	19
77	DIFFERENCES IN THE STRUCTURAL PROPERTIES AND STAR FORMATION RATES OF FIELD AND CLUSTER GALAXIES AT Z â ⁻¹ /4 1. Astrophysical Journal, 2016, 826, 60.	1.6	17
78	Gas Accretion in Star-Forming Galaxies. Astrophysics and Space Science Library, 2017, , 145-165.	1.0	17
79	Evolution of C iv Absorbers. I. The Cosmic Incidence. Astrophysical Journal, 2020, 904, 44.	1.6	17
80	DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT <i>z</i> = 1.62. Astrophysical Journal Letters, 2014, 789, L31.	3.0	16
81	ZFIRE: 3D Modeling of Rotation, Dispersion, and Angular Momentum of Star-forming Galaxies at z â^1⁄4 2. Astrophysical Journal, 2018, 858, 47.	1.6	16
82	MOSEL: Strong [Oiii] 5007 Ã Emitting Galaxies at (3 < z < 4) from the ZFOURGE Survey. Astrophysical Journal, 2020, 898, 45.	1.6	16
83	Consistent Dynamical and Stellar Masses with Potential Light IMF in Massive Quiescent Galaxies at 3 < z < 4 Using Velocity Dispersions Measurements with MOSFIRE. Astrophysical Journal Letters, 2021, 908, L35.	3.0	16
84	ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z $\hat{a}^{1}/4$ 2. Astrophysical Journal Letters, 2016, 825, L2.	3.0	14
85	ZFIRE: SIMILAR STELLAR GROWTH IN Hα-EMITTING CLUSTER AND FIELD GALAXIES AT z â^¼ 2. Astrophysical Journal, 2017, 834, 101.	1.6	14
86	Cloud-by-cloud, multiphase, Bayesian modelling: application to four weak, low-ionization absorbers. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2112-2139.	1.6	14
87	Reconstructing the Observed Ionizing Photon Production Efficiency at z â^1⁄4 2 Using Stellar Population Models. Astrophysical Journal, 2020, 889, 180.	1.6	14
88	zfourge: Extreme 5007 Ã Emission May Be a Common Early-lifetime Phase for Star-forming Galaxies at zÂ>Â2.5. Astrophysical Journal, 2018, 869, 141.	1.6	13
89	The CGM at Cosmic Noon with KCWI: Outflows from a Star-forming Galaxy at zÂ=Â2.071. Astrophysical Journal, 2020, 904, 164.	1.6	13
90	ZFIRE: Measuring Electron Density with [O ii] as a Function of Environment at zÂ=Â1.62. Astrophysical Journal. 2020. 892. 77.	1.6	12

#	Article	IF	CITATIONS
91	Kinematics of the O vi Circumgalactic Medium: Halo Mass Dependence and Outflow Signatures. Astrophysical Journal, 2019, 886, 66.	1.6	12
92	A giant galaxy in the young Universe with a massive ring. Nature Astronomy, 2020, 4, 957-964.	4.2	9
93	Mg ii Absorbers in High-resolution Quasar Spectra. I. Voigt Profile Models. Astrophysical Journal, 2020, 904, 28.	1.6	9
94	A Tale of Two Clusters: An Analysis of Gas-phase Metallicity and Nebular Gas Conditions in Proto-cluster Galaxies at zÂâ^1⁄4Â2. Astrophysical Journal, 2019, 883, 153.	1.6	8
95	The DUVET Survey: Resolved maps of star formation-driven outflows in a compact, starbursting disc galaxy. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5782-5796.	1.6	8
96	Disentangling the multiphase circumgalactic medium shared between a dwarf and a massive star-forming galaxy at <i>z</i> â^1/40.4. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3987-3998.	1.6	7
97	Evidence for galaxy quenching in the green valley caused by a lack of a circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2289-2301.	1.6	6
98	Evolution of C iv Absorbers. II. Where Does C iv Live?. Astrophysical Journal, 2022, 924, 12.	1.6	6
99	MOSEL Survey: Tracking the Growth of Massive Galaxies at 2Â<ÂzÂ<Â4 Using Kinematics and the IllustrisTNG Simulation. Astrophysical Journal, 2020, 893, 23.	1.6	5
100	Probing the circumgalactic medium of active galactic nuclei with background quasars. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2861-2869.	1.6	4
101	Decoupled black hole accretion and quenching: the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since zÂ=Â2.5. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3710-3716.	1.6	4
102	Discovery of extremely low-metallicity circumgalactic gas at <i>z</i> = 0.5 towards Q0454â^220. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5640-5657.	1.6	4
103	ZFIRE: The Beginning of the End for Massive Galaxies at z â^¼ 2 and Why Environment Matters. Astrophysical Journal, 2021, 919, 57.	1.6	4
104	Low-mass Group Environments Have No Substantial Impact on the Circumgalactic Medium Metallicity. Astronomical Journal, 2020, 159, 216.	1.9	4
105	Spatial Distribution of O vi Covering Fractions in the Simulated Circumgalactic Medium. Astrophysical Journal, 2021, 907, 8.	1.6	3
106	The Pristine Universe. Science, 2011, 334, 1216-1217.	6.0	1
107	Galaxy morphology – halo gas connections. Proceedings of the International Astronomical Union, 2005, 1, 80-85.	0.0	0
108	HST Observations Reveal the Curious Geometry of Circumgalactic Gas. Proceedings of the International Astronomical Union, 2016, 11, 342-344.	0.0	0

#	Article	IF	CITATIONS
109	Gas Kinematics in the Multiphase Circumgalactic Medium. Proceedings of the International Astronomical Union, 2016, 11, 345-347.	0.0	0
110	DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT $z = 1.62$. Publications of the Korean Astronomical Society, 2015, 30, 389-392.	0.1	0