Tomoyo Goto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833176/publications.pdf

Version: 2024-02-01

		516710	610901
57	764	16	24
papers	citations	h-index	g-index
57	57	57	866
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination. Ceramics International, 2014, 40, 10777-10785.	4.8	66
2	Interfacial shear strength of bioactive oated carbon fiber reinforced polyetheretherketone after in vivo implantation. Journal of Orthopaedic Research, 2012, 30, 1618-1625.	2.3	51
3	CO sensing properties of Au/SnO 2 –Co 3 O 4 catalysts on a micro thermoelectric gas sensor. Sensors and Actuators B: Chemical, 2016, 223, 774-783.	7.8	50
4	Synthesis of morphologically controlled hydroxyapatite from fish bone by urea-assisted hydrothermal treatment and its Sr2+ sorption capacity. Powder Technology, 2016, 292, 314-322.	4.2	33
5	Hydroxyapatite formation by solvothermal treatment of α-tricalcium phosphate with water–ethanol solution. Ceramics International, 2012, 38, 1003-1010.	4.8	32
6	Fine Tiâ€dispersed Al ₂ O ₃ composites and their mechanical and electrical properties. Journal of the American Ceramic Society, 2018, 101, 3181-3190.	3.8	26
7	Heat transfer control of micro-thermoelectric gas sensor for breath gas monitoring. Sensors and Actuators B: Chemical, 2017, 249, 571-580.	7.8	24
8	Behavior of hydroxyapatite crystals in a simulated body fluid: effects of crystal face. Journal of the Ceramic Society of Japan, 2013, 121, 807-812.	1.1	23
9	Low-temperature hydrothermal synthesis and characterization of SrTiO ₃ photocatalysts for NO <i>_x</i> degradation. Journal of the Ceramic Society of Japan, 2018, 126, 135-138.	1.1	21
10	Comparative study of hydroxyapatite formation from \hat{l}_{\pm} - and \hat{l}_{\pm} -tricalcium phosphates under hydrothermal conditions. Journal of the Ceramic Society of Japan, 2012, 120, 131-137.	1.1	19
11	Hydrothermal synthesis of composites of well-crystallized hydroxyapatite and poly(vinyl alcohol) hydrogel. Materials Science and Engineering C, 2012, 32, 397-403.	7.3	19
12	Immobilization of Sr2+ on naturally derived hydroxyapatite by calcination of different species of fish bones and influence of calcination on ion-exchange efficiency. Ceramics International, 2014, 40, 11649-11656.	4.8	19
13	Homogeneously bulk porous calcium hexaaluminate (CaAl12O19): Reactive sintering and microstructure development. Ceramics International, 2018, 44, 4462-4466.	4.8	19
14	Incorporation of tetracarboxylate ions into octacalcium phosphate for the development of next-generation biofriendly materials. Communications Chemistry, 2021, 4, .	4.5	19
15	The effects of sintering temperature on mechanical and electrical properties of Al2O3/Ti composites. Materials Today Communications, 2020, 25, 101522.	1.9	18
16	Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism. Bulletin of the Chemical Society of Japan, 2020, 93, 701-707.	3.2	18
17	CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/ \hat{l} ±-Al2O3. Sensors, 2015, 15, 31687-31698.	3.8	17
18	Synthesis of porphyrin nanodisks from COFs through mechanical stirring and their photocatalytic activity. Applied Surface Science, 2020, 513, 145720.	6.1	17

#	Article	IF	CITATIONS
19	Selective adsorption of dyes on TiO2-modified hydroxyapatite photocatalysts morphologically controlled by solvothermal synthesis. Journal of Environmental Chemical Engineering, 2021, 9, 105738.	6.7	15
20	Combinative effects of Y2O3 and Ti on Al2O3 ceramics for optimizing mechanical and electrical properties. Ceramics International, 2018, 44, 18382-18388.	4.8	14
21	Transformation of dicalcium phosphate dihydrate into octacalcium phosphate with incorporated dicarboxylate ions. Journal of the Ceramic Society of Japan, 2018, 126, 462-468.	1.1	14
22	Electrochemically assisted roomâ€temperature crack healing of ceramicâ€based composites. Journal of the American Ceramic Society, 2019, 102, 4236-4246.	3.8	14
23	Enhancing Visible Light Absorption of Yellow-Colored Peroxo-Titanate Nanotubes Prepared Using Peroxo Titanium Complex Ions. ACS Omega, 2020, 5, 21753-21761.	3.5	14
24	Ti and TiC co-toughened Al2O3 composites by in-situ synthesis from reaction of Ti and MWCNT. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139066.	5.6	13
25	Enhanced Photocatalytic Activity of Porphyrin Nanodisks Prepared by Exfoliation of Metalloporphyrin-Based Covalent Organic Frameworks. ACS Omega, 2022, 7, 7172-7178.	3.5	13
26	Low Alkali Bottom-Up Synthesis of Titanate Nanotubes Using a Peroxo Titanium Complex Ion Precursor for Photocatalysis. ACS Applied Nano Materials, 2020, 3, 7795-7803.	5.0	11
27	The influence of Fe ³⁺ doping on thermally induced crystallization and phase evolution of amorphous calcium phosphate. CrystEngComm, 2021, 23, 4627-4637.	2.6	11
28	Synthesis of TiO ₂ -Modified Hydroxyapatite with Various Morphology by Urea-Assisted Hydrothermal Method. Materials Science Forum, 0, 868, 28-32.	0.3	10
29	Sorption capacity of Cs ⁺ on titania nanotubes synthesized by solution processing. Journal of the Ceramic Society of Japan, 2018, 126, 801-807.	1.1	10
30	Thermoelectric Array Sensors with Selective Combustion Catalysts for Breath Gas Monitoring. Sensors, 2018, 18, 1579.	3.8	9
31	Photocatalytic properties and controlled morphologies of TiO2-modified hydroxyapatite synthesized by the urea-assisted hydrothermal method. Powder Technology, 2020, 373, 468-475.	4.2	9
32	Relationship between the CO sensing performance of micro-thermoelectric gas sensors and characteristics of PtPd/Co3O4 and PtPd/SnO2 catalysts. Sensors and Actuators B: Chemical, 2017, 243, 847-855.	7.8	8
33	Sorption capacity of seaweed-like sodium titanate mats for Co ²⁺ removal. RSC Advances, 2020, 10, 41032-41040.	3.6	8
34	Effects of Annealing Temperature on the Crystal Structure, Morphology, and Optical Properties of Peroxo-Titanate Nanotubes Prepared by Peroxo-Titanium Complex Ion. Nanomaterials, 2020, 10, 1331.	4.1	8
35	Thermoelectric gas sensors with selective combustion catalysts. Journal of the Ceramic Society of Japan, 2019, 127, 57-66.	1.1	7
36	Ti and SmAlO3 co-affected Al2O3 ceramics: Microstructure, electrical and mechanical properties. Journal of Alloys and Compounds, 2020, 835, 155427.	5 . 5	7

#	Article	IF	CITATIONS
37	Fine TiC dispersed Al ₂ O ₃ composites fabricated via in situ reaction synthesis and conventional process. Journal of the American Ceramic Society, 2021, 104, 2753-2766.	3.8	7
38	Surface-morphology modification of ceramic-based composites for photocatalytic activity via simple chemical and heat treatments. Journal of the Ceramic Society of Japan, 2018, 126, 877-884.	1.1	6
39	Low-Dimensional Carbon and Titania Nanotube Composites via a Solution Chemical Process and Their Nanostructural and Electrical Properties for Electrochemical Devices. ACS Applied Nano Materials, 2019, 2, 6230-6237.	5.0	6
40	CNTâ€induced TiC toughened Al 2 O 3 /Ti composites: Mechanical, electrical, and roomâ€temperature crackâ€healing behaviors. Journal of the American Ceramic Society, 2020, 103, 4573-4585.	3.8	6
41	Peculiarities of the formation, structural and morphological properties of zinc whitlockite (Ca ₁₈ Zn ₂ (HPO ₄) ₂ (PO ₄) ₁₂) synthesized <i>via a phase transformation process under hydrothermal conditions. CrystEngComm. 2022. 24. 5068-5079.</i>	2.6	6
42	Effect of nitrogen gas pressure during heat treatment on the morphology of silicon nitride fibers synthesized by carbothermal nitridation. Journal of Asian Ceramic Societies, 2018, 6, 401-408.	2.3	5
43	Fluorescent properties of octacalcium phosphate with incorporated isophthalate ions. Journal of the Ceramic Society of Japan, 2022, 130, 337-340.	1.1	5
44	The effects of microstructure on mechanical and electrical properties of W dispersed Al ₂ O ₃ ceramics. International Journal of Applied Ceramic Technology, 2022, 19, 1746-1755.	2.1	5
45	Formation of Hydroxyapatite Crystals from Octacalcium Phosphate with Incorporated Succinate Ion under Hydrothermal Conditions. Chemistry Letters, 2019, 48, 855-858.	1.3	4
46	Role of CeAl $11\ O\ 18$ in reinforcing Al $2\ O\ 3$ /Ti composites by adding CeO 2. International Journal of Applied Ceramic Technology, 2021, 18, 170-181.	2.1	4
47	Sr ²⁺ sorption property of seaweed-like sodium titanate mats: effects of crystallographic properties. RSC Advances, 2021, 11, 18676-18684.	3.6	4
48	Liquid-phase synthesis of advanced ceramic sorbents with high functionalization and morphological control. Journal of the Ceramic Society of Japan, 2022, 130, 163-171.	1.1	4
49	Oxidation of Pentatitanium Trisilicide (Ti ₅ Si ₃) Powder at High Temperature. Materials Science Forum, 0, 868, 38-42.	0.3	3
50	Solvothermal Synthesis of TiO ₂ -Modified Hydroxyapatite Using Water-Isopropanol Solution. Materials Science Forum, 0, 922, 86-91.	0.3	3
51	Development of Ti dispersed ZrO2 composites and their room-temperature crack-healing behaviors. Journal of Alloys and Compounds, 2021, 851, 156895.	5.5	3
52	Crystallization Behavior of the Low-Temperature Mineralization Sintering Process for Glass Nanoparticles. Materials, 2020, 13, 3281.	2.9	2
53	Bottom-up method for synthesis of layered lithium titanate nanoplates using ion precursor. Chemical Communications, 2021, 57, 12536-12539.	4.1	2
54	Formation of vertically grown 1D TiO ₂ nanorods on the surface of Al ₂ 0 ₃ /Ti composites by simple heat treatment and their photocatalytic performance. Journal of the Ceramic Society of Japan, 2018, 126, 847-851.	1.1	1

Томоуо Сото

#	Article	IF	CITATIONS
55	BaTiO3 Nanocubes Functionalized by Catechol-Based Organic Molecules via Ligand-Exchange and Chemical Reactions: Implications for Closed Packing of Nanoblocks. ACS Applied Nano Materials, 2022, 5, 1056-1067.	5.0	1
56	Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy. Nanoscale Advances, 2022, 4, 2992-2995.	4.6	1
57	Mechanism investigation of the enhanced oxygen storage performance of YBaCo ₄ O _{7+<i>i\rangle^i/</i>Chemical Communications, 2022, 58, 2822-2825.}	4.1	0