Christel Cederberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategic deployment of riparian buffers and windbreaks in Europe can co-deliver biomass and environmental benefits. Communications Earth & Environment, 2021, 2, .	2.6	11
2	Can integrated watershed management reduce soil erosion and improve livelihoods? A study from northern Ethiopia. International Soil and Water Conservation Research, 2020, 8, 266-276.	3.0	26
3	Towards better representation of organic agriculture in life cycle assessment. Nature Sustainability, 2020, 3, 419-425.	11.5	171
4	Subnational nutrient budgets to monitor environmental risks in EU agriculture: calculating phosphorus budgets for 243 EU28 regions using public data. Nutrient Cycling in Agroecosystems, 2020, 117, 199-213.	1.1	16
5	Is the nitrogen footprint fit for purpose? An assessment of models and proposed uses. Journal of Environmental Management, 2019, 240, 198-208.	3.8	18
6	Beyond the borders – burdens of Swedish food consumption due to agrochemicals, greenhouse gases and land-use change. Journal of Cleaner Production, 2019, 214, 644-652.	4.6	26
7	Nitrogen flows on organic and conventional dairy farms: a comparison of three indicators. Nutrient Cycling in Agroecosystems, 2018, 110, 25-38.	1.1	18
8	Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01. Environmental Impact Assessment Review, 2017, 62, 110-114.	4.4	26
9	Characterization factors for land use impacts on biodiversity in life cycle assessment based on direct measures of plant species richness in European farmland in the †Temperate Broadleaf and Mixed Forest' biome. Science of the Total Environment, 2017, 580, 358-366.	3.9	42
10	Freshwater ecotoxicity impacts from pesticide use in animal and vegetable foods produced in Sweden. Science of the Total Environment, 2017, 581-582, 448-459.	3.9	31
11	Improved life cycle modelling of benefits from sewage sludge anaerobic digestion and land application. Resources, Conservation and Recycling, 2017, 122, 126-134.	5.3	41
12	Carbon footprints and land use of conventional and organic diets in Germany. Journal of Cleaner Production, 2017, 161, 127-142.	4.6	77
13	How to analyse ecosystem services in landscapes—A systematic review. Ecological Indicators, 2017, 73, 492-504.	2.6	120
14	Challenges in developing regionalized characterization factors in land use impact assessment: impacts on ecosystem services in case studies of animal protein production in Sweden. International Journal of Life Cycle Assessment, 2017, 22, 328-345.	2.2	11
15	A method for calculating a landâ€use change carbon footprint (<scp>LUC</scp> â€ <scp>CFP</scp>) for agricultural commodities – applications to Brazilian beef and soy, Indonesian palm oil. Global Change Biology, 2014, 20, 3482-3491.	4.2	59
16	Modeling Potential Freshwater Ecotoxicity Impacts Due to Pesticide Use in Biofuel Feedstock Production: The Cases of Maize, Rapeseed, <i>Salix</i> , Soybean, Sugar Cane, and Wheat. Environmental Science & Technology, 2014, 48, 11379-11388.	4.6	43
17	Exploring variability in methods and data sensitivity in carbon footprints of feed ingredients. International Journal of Life Cycle Assessment, 2013, 18, 768-782.	2.2	42
18	The interaction between milk and beef production and emissions from land use change – critical considerations in life cycle assessment and carbon footprint studies of milk. Journal of Cleaner Production, 2012, 28, 134-142.	4.6	143

CHRISTEL CEDERBERG

#	Article	IF	CITATIONS
19	Including Carbon Emissions from Deforestation in the Carbon Footprint of Brazilian Beef. Environmental Science & Technology, 2011, 45, 1773-1779.	4.6	181
20	The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agricultural Systems, 2011, 104, 459-469.	3.2	167
21	How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealand and Sweden. International Journal of Life Cycle Assessment, 2011, 16, 420-430.	2.2	117
22	Environmental assessment of plant protection strategies using scenarios for pig feed production. Ambio, 2005, 34, 408-13.	2.8	3
23	System expansion and allocation in life cycle assessment of milk and beef production. International Journal of Life Cycle Assessment, 2003, 8, 350-356.	2.2	250
24	Agricultural land use in life cycle assessment (LCA): case studies of three vegetable oil crops. Journal of Cleaner Production, 2000, 8, 283-292.	4.6	163
25	Life cycle assessment of milk production — a comparison of conventional and organic farming. Journal of Cleaner Production, 2000, 8, 49-60.	4.6	409