
Ruth Belmares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7833082/publications.pdf Version: 2024-02-01

PIITH REIMADES

#	Article	IF	CITATIONS
1	Microbial production of tannase: an enzyme with potential use in food industry. LWT - Food Science and Technology, 2004, 37, 857-864.	2.5	156
2	Edible mushrooms as a novel protein source for functional foods. Food and Function, 2020, 11, 7400-7414.	2.1	90
3	Evaluation of functional and nutritional potential of a protein concentrate from Pleurotus ostreatus mushroom. Food Chemistry, 2021, 346, 128884.	4.2	43
4	Potential functional bakery products as delivery systems for prebiotics and probiotics health enhancers. Journal of Food Science and Technology, 2018, 55, 833-845.	1.4	30
5	Gallic acid production under anaerobic submerged fermentation by two bacilli strains. Microbial Cell Factories, 2015, 14, 209.	1.9	29
6	Subcritical water pretreatment for agave bagasse fractionation from tequila production and enzymatic susceptibility. Bioresource Technology, 2021, 338, 125536.	4.8	24
7	Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Critical Reviews in Food Science and Nutrition, 2021, 61, 2984-3006.	5.4	22
8	Novel Bio-Functional Aloe vera Beverages Fermented by Probiotic Enterococcus faecium and Lactobacillus lactis. Molecules, 2022, 27, 2473.	1.7	11
9	Rheological effects of high substitution levels of fats by inulin in whole cassava dough: chemical and physical characterization of produced biscuits. Journal of Food Science and Technology, 2020, 57, 1517-1522.	1.4	10
10	Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules, 2022, 27, 3887.	1.7	9
11	Effect of Ohmic Heating on Sensory, Physicochemical, and Microbiological Properties of "Aguamiel― of Agave salmiana. Foods, 2020, 9, 1834.	1.9	5
12	Discussion between alternative processing and preservation technologies and their application in beverages: A review. Journal of Food Processing and Preservation, 2018, 42, e13322.	0.9	4
13	Effect of Short Fermentation Times with Lactobacillus paracasei in Rheological, Physical and Chemical Composition Parameters in Cassava Dough and Biscuits. Applied Sciences (Switzerland), 2020, 10, 1383.	1.3	4
14	Development and Characterization of Pleurotus ostreatus Mushroom—Wheat Bread. Starch/Staerke, 0, , 2100126.	1.1	3
15	Detoxification of ochratoxin A and zearalenone by Pleurotus ostreatus during in vitro gastrointestinal digestion. Food Chemistry, 2022, 384, 132525.	4.2	3