José Baselga ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7832584/publications.pdf Version: 2024-02-01 7234 8208 46,733 160 78 158 citations h-index g-index papers 162 162 162 51608 docs citations times ranked citing authors all docs | # | Article | IF | CITATIONS | |----|---|-------------|-----------| | 1 | Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. New England Journal of Medicine, 2001, 344, 783-792. | 13.9 | 10,216 | | 2 | Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genetics, 2019, 51, 202-206. | 9.4 | 2,702 | | 3 | Everolimus in Postmenopausal Hormone-Receptor–Positive Advanced Breast Cancer. New England Journal of Medicine, 2012, 366, 520-529. | 13.9 | 2,474 | | 4 | Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine, 2017, 23, 703-713. | 15.2 | 2,473 | | 5 | A view on drug resistance in cancer. Nature, 2019, 575, 299-309. | 13.7 | 1,391 | | 6 | OncoKB: A Precision Oncology Knowledge Base. JCO Precision Oncology, 2017, 2017, 1-16. | 1.5 | 1,266 | | 7 | The EGF receptor family as targets for cancer therapy. Oncogene, 2000, 19, 6550-6565. | 2.6 | 1,251 | | 8 | Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet, The, 2012, 379, 633-640. | 6.3 | 1,165 | | 9 | Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 2012, 486, 405-409. | 13.7 | 1,107 | | 10 | Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature Reviews Cancer, 2009, 9, 463-475. | 12.8 | 993 | | 11 | ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nature Genetics, 2013, 45, 1439-1445. | 9.4 | 960 | | 12 | Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177. | 7.7 | 821 | | 13 | Critical Update and Emerging Trends in Epidermal Growth Factor Receptor Targeting in Cancer.
Journal of Clinical Oncology, 2005, 23, 2445-2459. | 0.8 | 676 | | 14 | The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell, 2018, 34, 427-438.e6. | 7.7 | 633 | | 15 | Phase II Trial of Pertuzumab and Trastuzumab in Patients With Human Epidermal Growth Factor
Receptor 2–Positive Metastatic Breast Cancer That Progressed During Prior Trastuzumab Therapy.
Journal of Clinical Oncology, 2010, 28, 1138-1144. | 0.8 | 593 | | 16 | Phase II Randomized Study of Neoadjuvant Everolimus Plus Letrozole Compared With Placebo Plus Letrozole in Patients With Estrogen Receptor–Positive Breast Cancer. Journal of Clinical Oncology, 2009, 27, 2630-2637. | 0.8 | 582 | | 17 | Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem Cell, 2017, 21, 374-382.e4. | 5. 2 | 578 | | 18 | HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature, 2018, 554, 189-194. | 13.7 | 572 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Early Adaptation and Acquired Resistance to CDK4/6 Inhibition in Estrogen Receptor–Positive Breast Cancer. Cancer Research, 2016, 76, 2301-2313. | 0.4 | 509 | | 20 | Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies. Cancer Discovery, 2017, 7, 596-609. | 7.7 | 490 | | 21 | Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature, 2015, 518, 240-244. | 13.7 | 486 | | 22 | Phase II Multicenter Study of the Antiepidermal Growth Factor Receptor Monoclonal Antibody Cetuximab in Combination With Platinum-Based Chemotherapy in Patients With Platinum-Refractory Metastatic and/or Recurrent Squamous Cell Carcinoma of the Head and Neck. Journal of Clinical Oncology, 2005, 23, 5568-5577. | 0.8 | 473 | | 23 | Targeting Tyrosine Kinases in Cancer: The Second Wave. Science, 2006, 312, 1175-1178. | 6.0 | 437 | | 24 | Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncology, The, 2017, 18, 904-916. | 5.1 | 427 | | 25 | Genome doubling shapes the evolution and prognosis of advanced cancers. Nature Genetics, 2018, 50, 1189-1195. | 9.4 | 411 | | 26 | Implementing Genome-Driven Oncology. Cell, 2017, 168, 584-599. | 13.5 | 405 | | 27 | Ado-Trastuzumab Emtansine for Patients With <i>HER2</i> -Mutant Lung Cancers: Results From a Phase II Basket Trial. Journal of Clinical Oncology, 2018, 36, 2532-2537. | 0.8 | 381 | | 28 | A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds. Cell, 2016, 167, 260-274.e22. | 13.5 | 376 | | 29 | Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. Cancer Discovery, 2016, 6, 154-165. | 7.7 | 372 | | 30 | Phase II and Tumor Pharmacodynamic Study of Gefitinib in Patients with Advanced Breast Cancer. Journal of Clinical Oncology, 2005, 23, 5323-5333. | 0.8 | 334 | | 31 | Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway. Cancer Cell, 2018, 34, 893-905.e8. | 7.7 | 307 | | 32 | Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Science Immunology, 2020, 5, . | 5.6 | 304 | | 33 | Phosphatidylinositol 3-Kinase α–Selective Inhibition With Alpelisib (BYL719) in <i>PIK3CA</i> -Altered Solid Tumors: Results From the First-in-Human Study. Journal of Clinical Oncology, 2018, 36, 1291-1299. | 0.8 | 298 | | 34 | Biomarker Analyses in CLEOPATRA: A Phase III, Placebo-Controlled Study of Pertuzumab in Human Epidermal Growth Factor Receptor 2–Positive, First-Line Metastatic Breast Cancer. Journal of Clinical Oncology, 2014, 32, 3753-3761. | 0.8 | 296 | | 35 | Tumour lineage shapes BRCA-mediated phenotypes. Nature, 2019, 571, 576-579. | 13.7 | 295 | | 36 | Activating <i>ESR1</i> Mutations Differentially Affect the Efficacy of ER Antagonists. Cancer Discovery, 2017, 7, 277-287. | 7.7 | 286 | | # | Article | IF | Citations | |----|--|------|-----------| | 37 | PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer. Science Translational Medicine, 2015, 7, 283ra51. | 5.8 | 276 | | 38 | Accelerating Discovery of Functional Mutant Alleles in Cancer. Cancer Discovery, 2018, 8, 174-183. | 7.7 | 275 | | 39 | Recurrent and functional regulatory mutations in breast cancer. Nature, 2017, 547, 55-60. | 13.7 | 269 | | 40 | AXL Mediates Resistance to PI3Kα Inhibition by Activating the EGFR/PKC/mTOR Axis in Head and Neck and Esophageal Squamous Cell Carcinomas. Cancer Cell, 2015, 27, 533-546. | 7.7 | 263 | | 41 | BRAF Inhibition in <i>BRAF</i> ^{V600} -Mutant Gliomas: Results From the VE-BASKET Study.
Journal of Clinical Oncology, 2018, 36, 3477-3484. | 0.8 | 247 | | 42 | AKT Inhibition in Solid Tumors With <i>AKT1</i> Mutations. Journal of Clinical Oncology, 2017, 35, 2251-2259. | 0.8 | 240 | | 43 | Carboplatin-based versus cisplatin-based chemotherapy in the treatment of surgically incurable advanced bladder carcinoma., 1997, 80, 1966-1972. | | 221 | | 44 | Targeting the Phosphoinositide-3 (PI3) Kinase Pathway in Breast Cancer. Oncologist, 2011, 16, 12-19. | 1.9 | 221 | | 45 | PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science, 2017, 355, 1324-1330. | 6.0 | 217 | | 46 | CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Reports, 2016, 17, 2367-2381. | 2.9 | 215 | | 47 | Feedback Suppression of PI3KÎ \pm Signaling in PTEN-Mutated Tumors Is Relieved by Selective Inhibition of PI3KÎ 2 . Cancer Cell, 2015, 27, 109-122. | 7.7 | 203 | | 48 | Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer: Results From BOLERO-2. Journal of Clinical Oncology, 2016, 34, 419-426. | 0.8 | 203 | | 49 | First-in-Human Dose Study of the Novel Transforming Growth Factor-Î ² Receptor I Kinase Inhibitor LY2157299 Monohydrate in Patients with Advanced Cancer and Glioma. Clinical Cancer Research, 2015, 21, 553-560. | 3.2 | 199 | | 50 | Adjuvant Trastuzumab: A Milestone in the Treatment of HERâ€2â€Positive Early Breast Cancer. Oncologist, 2006, 11, 4-12. | 1.9 | 198 | | 51 | p95HER2 and Breast Cancer. Cancer Research, 2011, 71, 1515-1519. | 0.4 | 195 | | 52 | PDK1-SGK1 Signaling Sustains AKT-Independent mTORC1 Activation and Confers Resistance to PI3Kα Inhibition. Cancer Cell, 2016, 30, 229-242. | 7.7 | 187 | | 53 | Alpelisib Plus Fulvestrant in <i>PIK3CA</i> Altered and <i>PIK3CA</i> Wild-Type Estrogen Receptor–Positive Advanced Breast Cancer. JAMA Oncology, 2019, 5, e184475. | 3.4 | 187 | | 54 | Double <i>PIK3CA</i> mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science, 2019, 366, 714-723. | 6.0 | 185 | | # | Article | IF | Citations | |----|--|------|-----------| | 55 | Molecular Features and Survival Outcomes of the Intrinsic Subtypes Within HER2-Positive Breast Cancer. Journal of the National Cancer Institute, 2014, 106, . | 3.0 | 178 | | 56 | A <scp>RAD </scp> 51 assay feasible in routine tumor samples calls <scp>PARP </scp> inhibitor response beyond <scp>BRCA </scp> mutation. EMBO Molecular Medicine, 2018, 10, . | 3.3 | 169 | | 57 | P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Science Translational Medicine, 2016, 8, 345ra87. | 5.8 | 152 | | 58 | Sorafenib in Combination With Capecitabine: An Oral Regimen for Patients With HER2-Negative Locally Advanced or Metastatic Breast Cancer. Journal of Clinical Oncology, 2012, 30, 1484-1491. | 0.8 | 151 | | 59 | A Naturally Occurring HER2 Carboxy-Terminal Fragment Promotes Mammary Tumor Growth and Metastasis. Molecular and Cellular Biology, 2009, 29, 3319-3331. | 1.1 | 150 | | 60 | Somatic <i>PIK3CA</i> mutations as a driver of sporadic venous malformations. Science Translational Medicine, 2016, 8, 332ra42. | 5.8 | 147 | | 61 | mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature, 2017, 547, 109-113. | 13.7 | 142 | | 62 | ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nature Genetics, 2020, 52, 198-207. | 9.4 | 140 | | 63 | Prevalence of Clonal Hematopoiesis Mutations in Tumor-Only Clinical Genomic Profiling of Solid
Tumors. JAMA Oncology, 2018, 4, 1589. | 3.4 | 139 | | 64 | Precision medicine at Memorial Sloan Kettering Cancer Center: clinical next-generation sequencing enabling next-generation targeted therapy trials. Drug Discovery Today, 2015, 20, 1422-1428. | 3.2 | 136 | | 65 | A First-in-Human Phase I Study of the ATP-Competitive AKT Inhibitor Ipatasertib Demonstrates Robust and Safe Targeting of AKT in Patients with Solid Tumors. Cancer Discovery, 2017, 7, 102-113. | 7.7 | 136 | | 66 | CLEOPATRA: A Phase III Evaluation of Pertuzumab and Trastuzumab for HER2-Positive Metastatic Breast Cancer. Clinical Breast Cancer, 2010, 10, 489-491. | 1.1 | 128 | | 67 | Safety and Efficacy of Neratinib in Combination With Capecitabine in Patients With Metastatic Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer. Journal of Clinical Oncology, 2014, 32, 3626-3633. | 0.8 | 118 | | 68 | RNA Sequencing to Predict Response to Neoadjuvant Anti-HER2 Therapy. JAMA Oncology, 2017, 3, 227. | 3.4 | 118 | | 69 | Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) <i>v</i> FULV in patients (pts) with estrogen receptor (ER)-positive, <i>PIK3CA</i> -mutant (MUT), locally advanced or metastatic breast cancer (MBC): Primary analysis from SANDPIPER Journal of Clinical Oncology, 2018, 36, LBA1006-LBA1006. | 0.8 | 116 | | 70 | Prospective Blinded Study of <i>BRAF</i> V600E Mutation Detection in Cell-Free DNA of Patients with Systemic Histiocytic Disorders. Cancer Discovery, 2015, 5, 64-71. | 7.7 | 115 | | 71 | Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR+, HER2â [°] advanced breast cancer: results from BOLERO-2. British Journal of Cancer, 2017, 116, 726-730. | 2.9 | 112 | | 72 | Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer. Cancer Discovery, 2016, 6, 1134-1147. | 7.7 | 106 | | # | Article | IF | Citations | |----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 73 | Phase II Genomics Study of Ixabepilone as Neoadjuvant Treatment for Breast Cancer. Journal of Clinical Oncology, 2009, 27, 526-534. | 0.8 | 102 | | 74 | Massively parallel sequencing of phyllodes tumours of the breast reveals actionable mutations, and <i><scp>TERT</scp></i> promoter hotspot mutations and <i>TERT</i> gene amplification as likely drivers of progression. Journal of Pathology, 2016, 238, 508-518. | 2.1 | 102 | | 75 | Phase I Safety, Pharmacokinetics, and Inhibition of Src Activity Study of Saracatinib in Patients with Solid Tumors. Clinical Cancer Research, 2010, 16, 4876-4883. | 3.2 | 99 | | 76 | Next-Generation Assessment of Human Epidermal Growth Factor Receptor 2 (ERBB2) Amplification Status. Journal of Molecular Diagnostics, 2017, 19, 244-254. | 1.2 | 96 | | 77 | Molecular Pathways: AXL, a Membrane Receptor Mediator of Resistance to Therapy. Clinical Cancer Research, 2016, 22, 1313-1317. | 3.2 | 92 | | 78 | Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nature Communications, 2017, 8, 14292. | 5.8 | 90 | | 79 | Focus on breast cancer. Cancer Cell, 2002, 1, 319-322. | 7.7 | 84 | | 80 | Efficacy and Determinants of Response to HER Kinase Inhibition in <i>HER2</i> Breast Cancer. Cancer Discovery, 2020, 10, 198-213. | 7.7 | 83 | | 81 | The hVps34― <scp>SGK</scp> 3 pathway alleviates sustained Pl3K/Akt inhibition by stimulating <scp>mTORC</scp> 1 and tumourÂgrowth. EMBO Journal, 2016, 35, 1902-1922. | 3.5 | 77 | | 82 | Constitutive HER2 Signaling Promotes Breast Cancer Metastasis through Cellular Senescence. Cancer Research, 2013, 73, 450-458. | 0.4 | 76 | | 83 | Neoadjuvant letrozole plus taselisib versus letrozole plus placebo in postmenopausal women with oestrogen receptor-positive, HER2-negative, early-stage breast cancer (LORELEI): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncology, The, 2019, 20, 1226-1238. | 5.1 | 76 | | 84 | High HER2 Expression Correlates with Response to the Combination of Lapatinib and Trastuzumab. Clinical Cancer Research, 2015, 21, 569-576. | 3.2 | 71 | | 85 | Taselisib (GDC-0032), a Potent \hat{l}^2 -Sparing Small Molecule Inhibitor of PI3K, Radiosensitizes Head and Neck Squamous Carcinomas Containing Activating < i>PIK3CA < / i> Alterations. Clinical Cancer Research, 2016, 22, 2009-2019. | 3.2 | 70 | | 86 | FOXA1 Mutations Reveal Distinct Chromatin Profiles and Influence Therapeutic Response in Breast Cancer. Cancer Cell, 2020, 38, 534-550.e9. | 7.7 | 67 | | 87 | 18F-Fluoroestradiol PET/CT Measurement of Estrogen Receptor Suppression during a Phase I Trial of the Novel Estrogen Receptor-Targeted Therapeutic GDC-0810: Using an Imaging Biomarker to Guide Drug Dosage in Subsequent Trials. Clinical Cancer Research, 2017, 23, 3053-3060. | 3.2 | 66 | | 88 | HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2. Clinical Cancer Research, 2017, 23, 4323-4334. | 3.2 | 64 | | 89 | TGF- \hat{l}^2 signalling-related markers in cancer patients with bone metastasis. Biomarkers, 2008, 13, 217-236. | 0.9 | 60 | | 90 | p95HER2–T cell bispecific antibody for breast cancer treatment. Science Translational Medicine, 2018, 10, . | 5.8 | 59 | | # | Article | IF | Citations | |-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 91 | Mechanisms of Acquired Resistance to BRAF V600E Inhibition in Colon Cancers Converge on RAF Dimerization and Are Sensitive to Its Inhibition. Cancer Research, 2017, 77, 6513-6523. | 0.4 | 58 | | 92 | Capivasertib, an AKT Kinase Inhibitor, as Monotherapy or in Combination with Fulvestrant in Patients with <1>AKT1 E17K-Mutant, ER-Positive Metastatic Breast Cancer. Clinical Cancer Research, 2020, 26, 3947-3957. | 3.2 | 54 | | 93 | Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2). Science Signaling, 2018, 11, . | 1.6 | 53 | | 94 | Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3030-3035. | 3.3 | 52 | | 95 | Paclitaxel With Inhibitor of Apoptosis Antagonist, LCL161, for Localized Triple-Negative Breast Cancer, Prospectively Stratified by Gene Signature in a Biomarker-Driven Neoadjuvant Trial. Journal of Clinical Oncology, 2018, 36, 3126-3133. | 0.8 | 52 | | 96 | Buparlisib plus fulvestrant versus placebo plus fulvestrant for postmenopausal, hormone receptor-positive, human epidermal growth factor receptor 2-negative, advanced breast cancer: Overall survival results from BELLE-2. European Journal of Cancer, 2018, 103, 147-154. | 1.3 | 52 | | 97 | Safety and Pharmacokinetics/Pharmacodynamics of the First-in-Class Dual Action HER3/EGFR Antibody MEHD7945A in Locally Advanced or Metastatic Epithelial Tumors. Clinical Cancer Research, 2015, 21, 2462-2470. | 3.2 | 51 | | 98 | Survival outcomes of the NeoALTTO study (BIG $1\hat{a}\in$ "06): updated results of a randomised multicenter phase III neoadjuvant clinical trial in patients with HER2-positive primary breast cancer. European Journal of Cancer, 2019, 118, 169-177. | 1.3 | 51 | | 99 | Combination of the mTOR Inhibitor Ridaforolimus and the Anti-IGF1R Monoclonal Antibody Dalotuzumab: Preclinical Characterization and Phase I Clinical Trial. Clinical Cancer Research, 2015, 21, 49-59. | 3.2 | 49 | | 100 | AKT signaling in ERBB2-amplified breast cancer. , 2016, 158, 63-70. | | 49 | | 101 | Phase II Study of Taselisib (GDC-0032) in Combination with Fulvestrant in Patients with HER2-Negative, Hormone Receptor–Positive Advanced Breast Cancer. Clinical Cancer Research, 2018, 24, 4380-4387. | 3.2 | 49 | | 102 | PI3K Inhibition Activates SGK1 via a Feedback Loop to Promote Chromatin-Based Regulation of ER-Dependent Gene Expression. Cell Reports, 2019, 27, 294-306.e5. | 2.9 | 49 | | 103 | A new anti-ErbB2 strategy in the treatment of cancer: Prevention of ligand-dependent ErbB2 receptor heterodimerization. Cancer Cell, 2002, 2, 93-95. | 7.7 | 48 | | 104 | A Major Role of p95/611-CTF, a Carboxy-Terminal Fragment of HER2, in the Down-modulation of the Estrogen Receptor in HER2-Positive Breast Cancers. Cancer Research, 2010, 70, 8537-8546. | 0.4 | 47 | | 105 | Stratification and therapeutic potential of PML in metastatic breast cancer. Nature Communications, 2016, 7, 12595. | 5.8 | 45 | | 106 | Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel <i>HER2</i> V659E Mutation. Cancer Discovery, 2013, 3, 1238-1244. | 7.7 | 43 | | 107 | Advances in the management of HER2-positive early breast cancer. Critical Reviews in Oncology/Hematology, 2017, 119, 113-122. | 2.0 | 42 | | 108 | Potential biomarkers of longâ€term benefit from singleâ€agent trastuzumab or lapatinib in HER2â€positive metastatic breast cancer. Molecular Oncology, 2014, 8, 20-26. | 2.1 | 37 | | # | Article | IF | CITATIONS | |-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 109 | Effect of p95HER2/611CTF on the Response to Trastuzumab and Chemotherapy. Journal of the National Cancer Institute, 2014, 106, . | 3.0 | 36 | | 110 | Therapeutic Benefit of Selective Inhibition of p110 $\hat{l}\pm$ PI3-Kinase in Pancreatic Neuroendocrine Tumors. Clinical Cancer Research, 2016, 22, 5805-5817. | 3.2 | 35 | | 111 | FGF4 dissociates anti-tumorigenic from differentiation signals of retinoic acid in human embryonal carcinomas. Oncogene, 1998, 17, 761-767. | 2.6 | 31 | | 112 | A Pharmacodynamic/Pharmacokinetic Study of Ficlatuzumab in Patients with Advanced Solid Tumors and Liver Metastases. Clinical Cancer Research, 2014, 20, 2793-2804. | 3.2 | 31 | | 113 | Differential Receptor Tyrosine Kinase PET Imaging for Therapeutic Guidance. Journal of Nuclear Medicine, 2016, 57, 1413-1419. | 2.8 | 28 | | 114 | Why the Epidermal Growth Factor Receptor? The Rationale for Cancer Therapy. Oncologist, 2002, 7, 2-8. | 1.9 | 28 | | 115 | Abstract LB-64: GDC-0032, a beta isoform-sparing PI3K inhibitor: Results of a first-in-human phase la dose escalation study Cancer Research, 2013, 73, LB-64-LB-64. | 0.4 | 26 | | 116 | Weekly Docetaxel in Breast Cancer: Applying Clinical Data to Patient Therapy. Oncologist, 2001, 6, 26-29. | 1.9 | 25 | | 117 | Acquired immune deficiency syndrome-related pulmonary non-Hodgkin lymphoma regressing after zidovudine therapy. Cancer, 1993, 71, 2332-2334. | 2.0 | 21 | | 118 | Vemurafenib in Patients With Relapsed Refractory Multiple Myeloma Harboring <i>BRAF</i> ^{V600} Mutations: A Cohort of the Histology-Independent VE-BASKET Study. JCO Precision Oncology, 2018, 2, 1-9. | 1.5 | 20 | | 119 | Pharmacology in the Era of Targeted Therapies: The Case of PI3K Inhibitors. Clinical Cancer Research, 2016, 22, 2099-2101. | 3.2 | 19 | | 120 | Next-Generation Sequencing–Based Assessment of JAK2, PD-L1, and PD-L2 Copy Number Alterations at 9p24.1 in Breast Cancer. Journal of Molecular Diagnostics, 2019, 21, 307-317. | 1.2 | 19 | | 121 | The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. ELife, 2016, 5, e12034. | 2.8 | 19 | | 122 | MEK plus PI3K/mTORC1/2 Therapeutic Efficacy Is Impacted by <i>TP53</i> Mutation in Preclinical Models of Colorectal Cancer. Clinical Cancer Research, 2015, 21, 5499-5510. | 3.2 | 18 | | 123 | A phase I/IB dose-escalation study of BEZ235 in combination with trastuzumab in patients with PI3-kinase or PTEN altered HER2+ metastatic breast cancer Journal of Clinical Oncology, 2012, 30, 508-508. | 0.8 | 18 | | 124 | Methodological aspects of the molecular and histological study of prostate cancer: Focus on PTEN. Methods, 2015, 77-78, 25-30. | 1.9 | 16 | | 125 | Mutational Analysis of Clonal Hematopoiesis in Solid Tumor Patients Illustrates the Critical Role of Systemic Anti-Cancer Therapies in the Evolution of Somatic Leukemia Disease Alleles. Blood, 2016, 128, 37-37. | 0.6 | 16 | | 126 | Using Pharmacokinetic and Pharmacodynamic Data in Early Decision Making Regarding Drug Development: A Phase I Clinical Trial Evaluating Tyrosine Kinase Inhibitor, AEE788. Clinical Cancer Research, 2012, 18, 6364-6372. | 3.2 | 14 | | # | Article | IF | CITATIONS | |-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------| | 127 | Epidermal growth factor receptor pathway inhibitors. Cancer Chemotherapy and Biological Response Modifiers, 2005, 22, 205-223. | 0.5 | 14 | | 128 | Association of T-Cell Receptor Repertoire Use With Response to Combined Trastuzumab-Lapatinib Treatment of HER2-Positive Breast Cancer. JAMA Oncology, 2018, 4, e181564. | 3.4 | 13 | | 129 | Cell Line–Specific Network Models of ER+ Breast Cancer Identify Potential PI3Kα Inhibitor Resistance Mechanisms and Drug Combinations. Cancer Research, 2021, 81, 4603-4617. | 0.4 | 13 | | 130 | Integrated data review of the first-in-human dose (FHD) study evaluating safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the oral transforming growth factor-beta (TGF-ÃÝ) receptor I kinase inhibitor, LY2157299 monohydrate (LY) Journal of Clinical Oncology, 2013, 31, 2016-2016. | 0.8 | 12 | | 131 | A phase II trial of PALA+dipyridamole in patients with advanced soft-tissue sarcoma. Cancer Chemotherapy and Pharmacology, 1991, 28, 51-54. | 1.1 | 11 | | 132 | Abstract PD5-5: Phase I study of the PI3Kα inhibitor BYL719 plus fulvestrant in patients with <i>PIK3CA</i> -altered and wild type ER+/HER2- locally advanced or metastatic breast cancer. Cancer Research, 2015, 75, PD5-5-PD5-5. | 0.4 | 11 | | 133 | Does epidermal growth factor receptor status predict activity of cetuximab in colorectal cancer patients?. Nature Clinical Practice Oncology, 2005, 2, 284-285. | 4.3 | 10 | | 134 | Immunohistochemical analysis of estrogen receptor in breast cancer with ESR1 mutations detected by hybrid capture-based next-generation sequencing. Modern Pathology, 2019, 32, 81-87. | 2.9 | 10 | | 135 | Lack of Increased Cardiac Toxicity with Sequential Doxorubicin and Paclitaxel. Cancer Investigation, 1998, 16, 67-71. | 0.6 | 9 | | 136 | A phase I study of MEHD7945A (MEHD), a first-in-class HER3/EGFR dual-action antibody, in patients (pts) with refractory/recurrent epithelial tumors: Expansion cohorts Journal of Clinical Oncology, 2012, 30, 2568-2568. | 0.8 | 9 | | 137 | Neoadjuvant eribulin in HER2-negative early-stage breast cancer (SOLTI-1007-NeoEribulin): a multicenter, two-cohort, non-randomized phase II trial. Npj Breast Cancer, 2021, 7, 145. | 2.3 | 9 | | 138 | Efficacy and safety of ixabepilone plus capecitabine in elderly patients with anthracycline- and taxane-pretreated metastatic breast cancer. Journal of Geriatric Oncology, 2013, 4, 346-352. | 0.5 | 7 | | 139 | Case 16-2012. New England Journal of Medicine, 2012, 366, 2018-2026. | 13.9 | 6 | | 140 | Phase I, open-label study of olaparib plus cisplatin in patients with advanced solid tumors Journal of Clinical Oncology, 2012, 30, 1009-1009. | 0.8 | 6 | | 141 | Incidence and Management of Diarrhea With Adjuvant Pertuzumab and Trastuzumab in Patients With Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Clinical Breast Cancer, 2020, 20, 174-181.e3. | 1.1 | 5 | | 142 | SOLTI NeoPARP: A phase II, randomized study of two schedules of iniparib plus paclitaxel and paclitaxel alone as neoadjuvant therapy in patients with triple-negative breast cancer (TNBC) Journal of Clinical Oncology, 2012, 30, 1011-1011. | 0.8 | 5 | | 143 | The oral transforming growth factor-beta (TGF-ß) receptor I kinase inhibitor LY2157299 plus lomustine in patients with treatment-refractory malignant glioma: The first human dose study Journal of Clinical Oncology, 2012, 30, 2042-2042. | 0.8 | 5 | | 144 | Phase lb combination trial of a MEK inhibitor, pimasertib (MSC1936369B), and a PI3K/mTOR inhibitor, SAR245409, in patients with locally advanced or metastatic solid tumors Journal of Clinical Oncology, 2012, 30, TPS3118-TPS3118. | 0.8 | 5 | | # | Article | IF | CITATIONS | |-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------| | 145 | SANDPIPER: Phase III study of the PI3-kinase (PI3K) inhibitor taselisib (GDC-0032) plus fulvestrant in patients (pts) with estrogen receptor (ER)-positive, HER2-negative locally advanced or metastatic breast cancer (BC) enriched for pts with <i>PIK3CA-</i> mutant tumors Journal of Clinical Oncology, 2016, 34, TPS617-TPS617. | 0.8 | 5 | | 146 | Creating a stronger front against cancer: ESMO and ECCO join forces. Annals of Oncology, 2008, 19, 1367-1368. | 0.6 | 4 | | 147 | Patient-reported function, health-related quality of life, and symptoms in APHINITY: pertuzumab plus trastuzumab and chemotherapy in HER2-positive early breast cancer. British Journal of Cancer, 2021, 125, 38-47. | 2.9 | 4 | | 148 | Abstract CT046: A phase I basket study of the PI3K inhibitor taselisib (GDC-0032) in <i>PIK3CA</i> -mutated locally advanced or metastatic solid tumors. Cancer Research, 2018, 78, CT046-CT046. | 0.4 | 4 | | 149 | BOLERO-2: Health-related quality-of-life (HRQoL) in metastatic breast cancer patients treated with everolimus and exemestane versus exemestane Journal of Clinical Oncology, 2012, 30, 125-125. | 0.8 | 4 | | 150 | Clinical management and resolution of stomatitis in BOLERO-2 Journal of Clinical Oncology, 2013, 31, 558-558. | 0.8 | 4 | | 151 | Abstract CT330: Phase I study of PI3Kα inhibitor BYL719 + aromatase inhibitor (AI) in patients (pts) with hormone receptor-positive (HR+) metastatic breast cancer (MBC). Cancer Research, 2015, 75, CT330-CT330. | 0.4 | 3 | | 152 | Oncologic Therapy for Solid Tumors Alters the Risk of Clonal Hematopoiesis. Blood, 2018, 132, 747-747. | 0.6 | 3 | | 153 | Effects of everolimus (EVE) on disease progression in bone and bone markers (BMs) in patients (pts) with bone metastases (mets) Journal of Clinical Oncology, 2012, 30, 102-102. | 0.8 | 2 | | 154 | Everolimus for postmenopausal women with advanced breast cancer: Updated results of the BOLERO-2 phase III trial Journal of Clinical Oncology, 2012, 30, 99-99. | 0.8 | 2 | | 155 | Patient-reported physical, emotional, and social functioning in advanced breast cancer: Insights from BOLERO-2 Journal of Clinical Oncology, 2013, 31, 553-553. | 0.8 | 2 | | 156 | Reply to S.M. Ali et al. Journal of Clinical Oncology, 2009, 27, e274-e275. | 0.8 | 1 | | 157 | A Pilot Study of Dose-Dense Paclitaxel With Trastuzumab and Lapatinib for Node-negative HER2-Overexpressed Breast Cancer. Clinical Breast Cancer, 2016, 16, 87-94. | 1.1 | 1 | | 158 | Human pharmacokinetic (PK) characterization of the novel dual-action anti-HER3/EGFR antibody MEHD7945A (MEHD) in patients with refractory/recurrent epithelial tumors Journal of Clinical Oncology, 2012, 30, 2567-2567. | 0.8 | 1 | | 159 | Weekly Docetaxel in Breast Cancer: Applying Clinical Data to Patient Therapy. Oncologist, 2001, 6, 26-29. | 1.9 | 1 | | 160 | Next-Generation Sequencing of Matched Normal Blood Identifies Clonal Hematopoiesis in a Significant Subset of Solid Tumor Patients without Hematologic Malignancies. Blood, 2015, 126, 2447-2447. | 0.6 | 0 |