## Matthew W Urban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7832105/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 55-62.                                                                                     | 3.0 | 430       |
| 2  | An Overview of Elastography-An Emerging Branch of Medical Imaging. Current Medical Imaging, 2011, 7, 255-282.                                                                                                                                                                  | 0.8 | 340       |
| 3  | Comb-Push Ultrasound Shear Elastography (CUSE): A Novel Method for Two-Dimensional Shear<br>Elasticity Imaging of Soft Tissues. IEEE Transactions on Medical Imaging, 2012, 31, 1821-1832.                                                                                     | 8.9 | 182       |
| 4  | Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes. Journal of the Acoustical Society of America, 2011, 129, 1344-1354.                                                                                    | 1.1 | 179       |
| 5  | Acoustic Waves in Medical Imaging and Diagnostics. Ultrasound in Medicine and Biology, 2013, 39, 1133-1146.                                                                                                                                                                    | 1.5 | 163       |
| 6  | Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids. Physics in Medicine and Biology, 2011, 56, 2245-2264.                                                                                                   | 3.0 | 162       |
| 7  | Fast Shear Compounding Using Robust 2-D Shear Wave Speed Calculation and Multi-directional<br>Filtering. Ultrasound in Medicine and Biology, 2014, 40, 1343-1355.                                                                                                              | 1.5 | 109       |
| 8  | Viscoelastic Properties of Normal and Infarcted Myocardium Measured by a Multifrequency Shear<br>Wave Method: Comparison with Pressure-Segment Length Method. Ultrasound in Medicine and<br>Biology, 2014, 40, 1785-1795.                                                      | 1.5 | 101       |
| 9  | Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in<br>a fluid (L). Journal of the Acoustical Society of America, 2011, 130, 3549-3552.                                                                                    | 1.1 | 99        |
| 10 | Arterial Stiffness Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical<br>Testing. Ultrasound in Medicine and Biology, 2016, 42, 308-321.                                                                                                            | 1.5 | 99        |
| 11 | Bias Observed in Time-of-Flight Shear Wave Speed Measurements Using Radiation Force of a Focused<br>Ultrasound Beam. Ultrasound in Medicine and Biology, 2011, 37, 1884-1892.                                                                                                  | 1.5 | 88        |
| 12 | Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array<br>Transducer. IEEE Transactions on Medical Imaging, 2013, 32, 2299-2310.                                                                                                      | 8.9 | 83        |
| 13 | A Review of Shearwave Dispersion Ultrasound Vibrometry (SDUV) and its Applications. Current<br>Medical Imaging, 2012, 8, 27-36.                                                                                                                                                | 0.8 | 82        |
| 14 | Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned<br>sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE). IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 290-302. | 3.0 | 81        |
| 15 | Attenuation measuring ultrasound shearwave elastography and <i>in vivo</i> application in post-transplant liver patients. Physics in Medicine and Biology, 2017, 62, 484-500.                                                                                                  | 3.0 | 73        |
| 16 | Comb-Push Ultrasound Shear Elastography (CUSE) With Various Ultrasound Push Beams. IEEE<br>Transactions on Medical Imaging, 2013, 32, 1435-1447.                                                                                                                               | 8.9 | 72        |
| 17 | Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.<br>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 748-758.                                                                              | 3.0 | 68        |
| 18 | On Lamb and Rayleigh wave convergence in viscoelastic tissues. Physics in Medicine and Biology, 2011, 56, 6723-6738.                                                                                                                                                           | 3.0 | 67        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Shearwave dispersion ultrasound vibrometry (sduv) on swine kidney. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2608-2619.                                                          | 3.0 | 65        |
| 20 | Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms:<br>repeatability and reproducibility using two ultrasound systems. Pediatric Radiology, 2015, 45, 376-385.                        | 2.0 | 65        |
| 21 | Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall. Physics in<br>Medicine and Biology, 2013, 58, 2675-2695.                                                                             | 3.0 | 61        |
| 22 | A Review of Vibro-acoustography and its Applications in Medicine. Current Medical Imaging, 2011, 7, 350-359.                                                                                                                 | 0.8 | 56        |
| 23 | Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation<br>in Tissue-Mimicking Media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,<br>2017, 64, 78-92. | 3.0 | 56        |
| 24 | Shear Elastic Modulus Estimation From Indentation and SDUV on Gelatin Phantoms. IEEE Transactions on Biomedical Engineering, 2011, 58, 1706-1714.                                                                            | 4.2 | 55        |
| 25 | Measurement of Viscoelastic Properties of In Vivo Swine Myocardium Using Lamb Wave Dispersion<br>Ultrasound Vibrometry (LDUV). IEEE Transactions on Medical Imaging, 2013, 32, 247-261.                                      | 8.9 | 55        |
| 26 | Shear Wave Dispersion Ultrasonic Vibrometry for Measuring Prostate Shear Stiffness and Viscosity:<br>An In Vitro Pilot Study. IEEE Transactions on Biomedical Engineering, 2011, 58, 235-242.                                | 4.2 | 52        |
| 27 | External Vibration Multi-Directional Ultrasound Shearwave Elastography (EVMUSE): Application in Liver Fibrosis Staging. IEEE Transactions on Medical Imaging, 2014, 33, 2140-2148.                                           | 8.9 | 51        |
| 28 | Noninvasive ultrasound image guided surface wave method for measuring the wave speed and estimating the elasticity of lungs: A feasibility study. Ultrasonics, 2011, 51, 289-295.                                            | 3.9 | 49        |
| 29 | Shear Wave Elastography Quantifies Stiffness in ExÂVivo Porcine Artery with Stiffened Arterial Region.<br>Ultrasound in Medicine and Biology, 2016, 42, 2423-2435.                                                           | 1.5 | 48        |
| 30 | Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion. Physics in Medicine and Biology, 2012, 57, 1263-1282.                                                                | 3.0 | 46        |
| 31 | Quantitative Assessment of Left Ventricular Diastolic Stiffness Using Cardiac Shear Wave<br>Elastography. Journal of Ultrasound in Medicine, 2016, 35, 1419-1427.                                                            | 1.7 | 44        |
| 32 | Implementation of vibro-acoustography on a clinical ultrasound system. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1169-1181.                                                      | 3.0 | 43        |
| 33 | Multifrequency vibro-acoustography. IEEE Transactions on Medical Imaging, 2006, 25, 1284-1295.                                                                                                                               | 8.9 | 41        |
| 34 | In Vivo Vibroacoustography of Large Peripheral Arteries. Investigative Radiology, 2008, 43, 243-252.                                                                                                                         | 6.2 | 41        |
| 35 | Local Phase Velocity Based Imaging: A New Technique Used for Ultrasound Shear Wave Elastography.<br>IEEE Transactions on Medical Imaging, 2019, 38, 894-908.                                                                 | 8.9 | 41        |
| 36 | Noninvasive Evaluation of Bladder Wall Mechanical Properties as a Function of Filling Volume:<br>Potential Application in Bladder Compliance Assessment. PLoS ONE, 2016, 11, e0157818.                                       | 2.5 | 37        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Shear wave vibrometry evaluation in transverse isotropic tissue mimicking phantoms and skeletal muscle. Physics in Medicine and Biology, 2014, 59, 7735-7752.                                                             | 3.0 | 36        |
| 38 | Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional<br>Ultrasound Shear Wave Elastography. IEEE Transactions on Medical Imaging, 2016, 35, 2098-2106.                              | 8.9 | 36        |
| 39 | Production of acoustic radiation force using ultrasound: methods and applications. Expert Review of Medical Devices, 2018, 15, 819-834.                                                                                   | 2.8 | 36        |
| 40 | Modulation of ultrasound to produce multifrequency radiation force. Journal of the Acoustical Society of America, 2010, 127, 1228-1238.                                                                                   | 1.1 | 35        |
| 41 | Coded excitation plane wave imaging for shear wave motion detection. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1356-1372.                                                     | 3.0 | 34        |
| 42 | RSNA QIBA ultrasound shear wave speed Phase II phantom study in viscoelastic media. , 2015, , .                                                                                                                           |     | 33        |
| 43 | Shearwave dispersion ultrasound vibrometry applied to in vivo myocardium. , 2009, 2009, 2891-4.                                                                                                                           |     | 29        |
| 44 | Shear Wave Speed Measurement Using an Unfocused UltrasoundÂBeam. Ultrasound in Medicine and<br>Biology, 2012, 38, 1646-1655.                                                                                              | 1.5 | 29        |
| 45 | Performance of 2â€Ðimensional Ultrasound Shear Wave Elastography in Liver Fibrosis Detection Using<br>Magnetic Resonance Elastography as the Reference Standard. Journal of Ultrasound in Medicine, 2016,<br>35, 401-412. | 1.7 | 29        |
| 46 | Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study. Physics in Medicine and Biology, 2017, 62, 2694-2718.                                                   | 3.0 | 29        |
| 47 | Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force. Journal of the Acoustical Society of America, 2011, 130, 1133-1141.                                          | 1.1 | 28        |
| 48 | Breast vibro-acoustography: initial results show promise. Breast Cancer Research, 2012, 14, R128.                                                                                                                         | 5.0 | 27        |
| 49 | Application of Acoustoelasticity to Evaluate Nonlinear Modulus in <italic>Ex Vivo</italic><br>Kidneys. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 188-200.                        | 3.0 | 27        |
| 50 | Two Point Method For Robust Shear Wave Phase Velocity Dispersion Estimation of Viscoelastic Materials. Ultrasound in Medicine and Biology, 2019, 45, 2540-2553.                                                           | 1.5 | 26        |
| 51 | Harmonic pulsed excitation and motion detection of a vibrating reflective target. Journal of the<br>Acoustical Society of America, 2008, 123, 519-533.                                                                    | 1.1 | 25        |
| 52 | Harmonic motion detection in a vibrating scattering medium. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2008, 55, 1956-1974.                                                              | 3.0 | 25        |
| 53 | Noninvasive Assessment of Liver Fibrosis Using Ultrasoundâ€Based Shear Wave Measurement and<br>Comparison to Magnetic Resonance Elastography. Journal of Ultrasound in Medicine, 2014, 33,<br>1597-1604.                  | 1.7 | 25        |
| 54 | Radiological Society of North America/Quantitative Imaging Biomarker Alliance Shear Wave Speed Bias<br>Quantification in Elastic and Viscoelastic Phantoms. Journal of Ultrasound in Medicine, 2021, 40,<br>569-581.      | 1.7 | 25        |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Improved Shear Wave Group Velocity Estimation Method Based on Spatiotemporal Peak and<br>Thresholding Motion Search. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency<br>Control, 2017, 64, 660-668.                                       | 3.0 | 22        |
| 56 | Investigation of the effects of myocardial anisotropy for shear wave elastography using impulsive force and harmonic vibration. Physics in Medicine and Biology, 2016, 61, 365-382.                                                                       | 3.0 | 22        |
| 57 | Robust Phase Velocity Dispersion Estimation of Viscoelastic Materials Used for Medical Applications<br>Based on the Multiple Signal Classification Method. IEEE Transactions on Ultrasonics, Ferroelectrics,<br>and Frequency Control, 2018, 65, 423-439. | 3.0 | 21        |
| 58 | Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 483-496.                                                                                      | 3.0 | 21        |
| 59 | Pediatric Cardiac Shear Wave Elastography for Quantitative Assessment of Myocardial Stiffness: A<br>Pilot Study in Healthy Controls. Ultrasound in Medicine and Biology, 2016, 42, 1719-1729.                                                             | 1.5 | 20        |
| 60 | Application of Attenuation Measuring Ultrasound Shearwave Elastography in 8 post-transplant liver patients. , 2014, , .                                                                                                                                   |     | 19        |
| 61 | Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography. Physics in Medicine and Biology, 2015, 60, 1289-1306.                                                         | 3.0 | 19        |
| 62 | Local Phase Velocity Based Imaging of Viscoelastic Phantoms and Tissues. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 389-405.                                                                                      | 3.0 | 19        |
| 63 | Y-box binding protein-1 is crucial in acquired drug resistance development in metastatic clear-cell renal cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 33.                                                             | 8.6 | 19        |
| 64 | Phase aberration correction using ultrasound radiation force and vibrometry optimization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 1142-1153.                                                                   | 3.0 | 18        |
| 65 | Characterization of transverse isotropy in compressed tissue-mimicking phantoms. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1036-1046.                                                                            | 3.0 | 18        |
| 66 | Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.<br>Ultrasound in Medicine and Biology, 2016, 42, 1031-1041.                                                                                                     | 1.5 | 18        |
| 67 | Arterial waveguide model for shear wave elastography: implementation and <i>in vitro</i> validation.<br>Physics in Medicine and Biology, 2017, 62, 5473-5494.                                                                                             | 3.0 | 18        |
| 68 | Characterizing blood clots using acoustic radiation force optical coherence elastography and ultrasound shear wave elastography. Physics in Medicine and Biology, 2021, 66, 035013.                                                                       | 3.0 | 18        |
| 69 | Vibro-acoustography beam formation with reconfigurable arrays. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2012, 59, 1421-1431.                                                                                           | 3.0 | 17        |
| 70 | Combined spatiotemporal and frequency-dependent shear wave elastography enables detection of vulnerable carotid plaques as validated by MRI. Scientific Reports, 2020, 10, 403.                                                                           | 3.3 | 17        |
| 71 | In vivo swine kidney viscoelasticity during acute gradual decrease in renal blood flow: pilot study.<br>Revista De Ingenieria Biomedica, 2013, 7, 68-78.                                                                                                  | 0.1 | 17        |
| 72 | Phase Velocity Estimation With Expanded Bandwidth in Viscoelastic Phantoms and Tissues. IEEE Transactions on Medical Imaging, 2021, 40, 1352-1362.                                                                                                        | 8.9 | 16        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Optical coherence tomography for evaluating capillary waves in blood and plasma. Biomedical Optics<br>Express, 2020, 11, 1092.                                                                                                 | 2.9 | 16        |
| 74 | Thermal Safety of Vibro-Acoustography Using a Confocal Transducer. Ultrasound in Medicine and Biology, 2010, 36, 343-349.                                                                                                      | 1.5 | 15        |
| 75 | Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 647-662.                          | 3.0 | 15        |
| 76 | Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.<br>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 222-232.                               | 3.0 | 15        |
| 77 | Acoustic Radiation Force-Induced Creep–Recovery (ARFICR): A Noninvasive Method to Characterize<br>Tissue Viscoelasticity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018,<br>65, 3-13.          | 3.0 | 15        |
| 78 | Dispersion curve calculation in viscoelastic tissue-mimicking materials using non-parametric, parametric, and high-resolution methods. Ultrasonics, 2021, 109, 106257.                                                         | 3.9 | 15        |
| 79 | Automated Compression Device for Viscoelasticity Imaging. IEEE Transactions on Biomedical Engineering, 2017, 64, 1535-1546.                                                                                                    | 4.2 | 14        |
| 80 | A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 535-551.                                   | 3.0 | 13        |
| 81 | Simultaneous identification of elastic properties, thickness, and diameter of arteries excited with ultrasound radiation force. Physics in Medicine and Biology, 2015, 60, 5279-5296.                                          | 3.0 | 13        |
| 82 | 1α,25-Dihydroxyvitamin D3 Encapsulated in Nanoparticles Prevents Venous Neointimal Hyperplasia and<br>Stenosis in Porcine Arteriovenous Fistulas. Journal of the American Society of Nephrology: JASN, 2021,<br>32, 866-885.   | 6.1 | 13        |
| 83 | Multimodal guided wave inversion for arterial stiffness: methodology and validation in phantoms.<br>Physics in Medicine and Biology, 2021, 66, 115020.                                                                         | 3.0 | 13        |
| 84 | Discrepancies in Reporting Tissue Material Properties. Journal of Ultrasound in Medicine, 2013, 32,<br>886-888.                                                                                                                | 1.7 | 13        |
| 85 | Multifrequency radiation force of acoustic waves in fluids. Physica D: Nonlinear Phenomena, 2007, 232, 48-53.                                                                                                                  | 2.8 | 12        |
| 86 | Measurement of biaxial mechanical properties of soft tubes and arteries using piezoelectric elements and sonometry. Physics in Medicine and Biology, 2011, 56, 3371-3386.                                                      | 3.0 | 12        |
| 87 | Optimized Shear Wave Generation Using Hybrid Beamforming Methods. Ultrasound in Medicine and Biology, 2014, 40, 188-199.                                                                                                       | 1.5 | 12        |
| 88 | Detecting Kidney Stones Using Twinkling Artifacts: Survey of Kidney Stones with Varying Composition and Size. Ultrasound in Medicine and Biology, 2020, 46, 156-166.                                                           | 1.5 | 12        |
| 89 | Time-Aligned Plane Wave Compounding Methods for High-Frame-Rate Shear Wave Elastography:<br>Experimental Validation and Performance Assessment on Tissue Phantoms. Ultrasound in Medicine and<br>Biology, 2021, 47, 1931-1948. | 1.5 | 12        |
| 90 | Measuring the phase of vibration of spheres in a viscoelastic medium as an image contrast modality.<br>Journal of the Acoustical Society of America, 2005, 118, 3465-3472.                                                     | 1.1 | 11        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | In vitro renal cortex elasticity and viscosity measurements with shearwave dispersion ultrasound vibrometry (SDUV) on swine kidney. , 2009, 2009, 4428-31.                                                                                         |     | 11        |
| 92  | Shear wave Dispersion Ultrasound Vibrometry (SDUV) on an ultrasound system: In vivo measurement of liver viscoelasticity in healthy animals. , 2010, , .                                                                                           |     | 11        |
| 93  | Fast Local Phase Velocity-Based Imaging: Shear Wave Particle Velocity and Displacement Motion Study.<br>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 526-537.                                                | 3.0 | 11        |
| 94  | Acoustic radiation force optical coherence elastography for evaluating mechanical properties of soft condensed matters and its biological applications. Journal of Biophotonics, 2020, 13, e201960134.                                             | 2.3 | 11        |
| 95  | Fluid surface tension evaluation using capillary wave measurement with optical coherence tomography. AIP Advances, 2020, 10, 055121.                                                                                                               | 1.3 | 11        |
| 96  | Four-dimensional (4D) phase velocity optical coherence elastography in heterogeneous materials and biological tissue. Biomedical Optics Express, 2020, 11, 3795.                                                                                   | 2.9 | 11        |
| 97  | Quantification of liver stiffness and viscosity with SDUV: In vivo animal study. , 2008, , .                                                                                                                                                       |     | 10        |
| 98  | Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation. Journal of the Acoustical Society of America, 2015, 138, 2499-2507.                                                          | 1.1 | 10        |
| 99  | Plaque characterization using shear wave elastography—evaluation of differentiability and accuracy<br>using a combined <i>ex vivo</i> and <i>in vitro</i> setup. Physics in Medicine and Biology, 2018, 63,<br>235008.                             | 3.0 | 10        |
| 100 | Evaluation of Reconstruction Parameters for 2-D Comb-Push Ultrasound Shear Wave Elastography.<br>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 254-263.                                                       | 3.0 | 10        |
| 101 | Ex Vivo measurements of myocardial viscoelasticity using Shearwave Dispersion Ultrasound<br>Vibrometry (SDUV). , 2009, 2009, 2895-8.                                                                                                               |     | 9         |
| 102 | In vivo thyroid vibro-acoustography: a pilot study. BMC Medical Imaging, 2013, 13, 12.                                                                                                                                                             | 2.7 | 9         |
| 103 | In vivo transthoracic measurement of end-diastolic left ventricular stiffness with ultrasound shear wave elastography: A pilot study. , 2014, , .                                                                                                  |     | 9         |
| 104 | Probe Oscillation Shear Wave Elastography: Initial <italic>In Vivo</italic> Results in Liver.<br>IEEE Transactions on Medical Imaging, 2018, 37, 1214-1223.                                                                                        | 8.9 | 9         |
| 105 | <i>In vivo</i> open- and closed-chest measurements of left-ventricular myocardial viscoelasticity<br>using lamb wave dispersion ultrasound vibrometry (LDUV): a feasibility study. Biomedical Physics and<br>Engineering Express, 2018, 4, 047001. | 1.2 | 9         |
| 106 | Three-dimensional shear wave elastography on conventional ultrasound scanners with external vibration. Physics in Medicine and Biology, 2020, 65, 215009.                                                                                          | 3.0 | 9         |
| 107 | Using Ultrasound Color Doppler Twinkling to Identify Biopsy Markers in the Breast and Axilla.<br>Ultrasound in Medicine and Biology, 2021, 47, 3122-3134.                                                                                          | 1.5 | 9         |
| 108 | Measurements of swine renal cortex shear elasticity and viscosity with Shearwave Dispersion                                                                                                                                                        |     | 8         |

Ultrasound Vibrometry (SDUV). , 2009, , .

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Vibro-acoustography and multifrequency image compounding. Ultrasonics, 2011, 51, 689-696.                                                                                                     | 3.9 | 8         |
| 110 | Comb-push Ultrasound Shear Elastography (CUSE): A novel and fast technique for shear elasticity imaging. , 2012, , .                                                                          |     | 8         |
| 111 | Velocity measurement by vibro-acoustic Doppler. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 752-765.                                                   | 3.0 | 8         |
| 112 | Ultrasound vibrometry using orthogonal- frequency-based vibration pulses. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 2359-2370.                    | 3.0 | 8         |
| 113 | Viscoelastic parameter estimation using simulated shear wave motion and convolutional neural networks. Computers in Biology and Medicine, 2021, 133, 104382.                                  | 7.0 | 8         |
| 114 | Novel Uses of Ultrasound to Assess Kidney Mechanical Properties. Kidney360, 2021, 2, 1531-1539.                                                                                               | 2.1 | 8         |
| 115 | Measurement of longitudinal and circumferential waves in tubes and artery excited with ultrasound radiation force. , 2013, , .                                                                |     | 7         |
| 116 | Discrepancies in Reporting Tissue Material Properties. Journal of Ultrasound in Medicine, 2013, 32, 886-888.                                                                                  | 1.7 | 7         |
| 117 | Characterization of transverse isotropy in compressed tissue mimicking phantoms. , 2014, 62, 1036-46.                                                                                         |     | 7         |
| 118 | Shear wave elastography on the GE LOGIQ E9 with Comb-push Ultrasound Shear Elastography (CUSE) and time aligned sequential tracking (TAST). , 2014, , .                                       |     | 7         |
| 119 | Ultrasonic method to characterize shear wave propagation in micellar fluids. Journal of the<br>Acoustical Society of America, 2016, 140, 1719-1726.                                           | 1.1 | 7         |
| 120 | Ex vivo measurements of mechanical properties of myocardium using Lamb and Rayleigh wave dispersion velocities. , 2009, , .                                                                   |     | 6         |
| 121 | Modal analysis of ultrasound radiation force generated shear waves on arteries. , 2010, 2010, 2585-8.                                                                                         |     | 6         |
| 122 | Composed vibration pulses for ultrasound vibrometry. , 2010, , .                                                                                                                              |     | 6         |
| 123 | Deconvolution of vibroacoustic images using a simulation model based on a three dimensional point spread function. Ultrasonics, 2013, 53, 36-44.                                              | 3.9 | 6         |
| 124 | Viscoelastic tissue mimicking phantom validation study with shear wave elasticity imaging and viscoelastic spectroscopy. , 2015, , .                                                          |     | 6         |
| 125 | GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models. Physics in Medicine and Biology, 2018, 63, 10NT01. | 3.0 | 6         |
| 126 | Ultrasound Shear Wave Elastography as a Measure of Porcine Hepatic Disease in Right Heart<br>Dysfunction: A Pilot Study. Ultrasound in Medicine and Biology, 2018, 44, 2393-2399.             | 1.5 | 6         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Downstream vascular changes after flow-diverting device deployment in a rabbit model. Journal of NeuroInterventional Surgery, 2019, 11, 523-527.                                                                     | 3.3 | 6         |
| 128 | Two-dimensional (2D) dynamic vibration optical coherence elastography (DV-OCE) for evaluating<br>mechanical properties: a potential application in tissue engineering. Biomedical Optics Express, 2021, 12,<br>1217. | 2.9 | 6         |
| 129 | Estimation of mechanical properties of arteries and soft tubes using shear wave speeds. , 2009, , .                                                                                                                  |     | 5         |
| 130 | Lamb wave Shearwave Dispersion Ultrasound Vibrometry (SDUV) validation study. , 2010, 2010, 45-8.                                                                                                                    |     | 5         |
| 131 | In vivo open and closed chest measurements of myocardial viscoelasticity through a heart cycle using Lamb wave Dispersion Ultrasound Vibrometry (LDUV). , 2011, , .                                                  |     | 5         |
| 132 | In vivo patient measurements of bladder elasticity using Ultrasound Bladder Vibrometry (UBV). , 2013, 2013, 113-6.                                                                                                   |     | 5         |
| 133 | The â€~sixth sense' of ultrasound: probing nonlinear elasticity with acoustic radiation force. Physics in<br>Medicine and Biology, 2015, 60, 3775-3794.                                                              | 3.0 | 5         |
| 134 | Characterizing thrombus with multiple red blood cell compositions by optical coherence tomography attenuation coefficient. Journal of Biophotonics, 2021, 14, e202000364.                                            | 2.3 | 5         |
| 135 | Elasticity and viscosity estimation from shear wave velocity and attenuation: A simulation study. , 2010, , .                                                                                                        |     | 4         |
| 136 | Phase aberration in Shear Wave Dispersion Ultrasound Vibrometry. , 2011, , .                                                                                                                                         |     | 4         |
| 137 | Fast shear compounding using directional filtering and two-dimensional shear wave speed calculation. , 2013, , .                                                                                                     |     | 4         |
| 138 | Effects of phase aberration on acoustic radiation force-based shear wave generation. , 2013, , .                                                                                                                     |     | 4         |
| 139 | Feasibility of shear wave elastography for plaque characterization. , 2014, , .                                                                                                                                      |     | 4         |
| 140 | Application of acoustoelasticity to evaluate non-linear modulus in ex vivo kidneys. , 2016, , .                                                                                                                      |     | 4         |
| 141 | A parametric evaluation of shear wave speeds estimated with time-of-flight calculations in viscoelastic media. Journal of the Acoustical Society of America, 2020, 148, 1349-1371.                                   | 1.1 | 4         |
| 142 | Plane wave elastography: a frequency-domain ultrasound shear wave elastography approach. Physics<br>in Medicine and Biology, 2021, 66, 125017.                                                                       | 3.0 | 4         |
| 143 | In vivo assessment of renal tissue viscoelasticity during acute and gradual renal ischemia. , 2011, , .                                                                                                              |     | 3         |
| 144 | Complex shear modulus quantification from acoustic radiation force creep-recovery and shear wave                                                                                                                     |     | 3         |

propagation., 2012,,.

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | In vivo measurement of renal transplant viscoelasticity. , 2013, , .                                                                                                                                               |     | 3         |
| 146 | Shear waves generated with magnetomotive force on an embedded sphere. , 2014, , .                                                                                                                                  |     | 3         |
| 147 | Investigation of the effects of myocardial anisotropy for shear wave elastography using acoustic radiation force and harmonic vibration. , 2015, , .                                                               |     | 3         |
| 148 | Tissue characterization using simultaneous estimation of backscatter coefficient and elastic shear modulus. , 2016, 2016, 2881-2884.                                                                               |     | 3         |
| 149 | Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry. Physics in Medicine and Biology, 2016, 61, 4781-4795.                                                                  | 3.0 | 3         |
| 150 | Optical coherence viscometry. Applied Physics Letters, 2021, 118, 164102.                                                                                                                                          | 3.3 | 3         |
| 151 | Toward improved accuracy in shear wave elastography of arteries through controlling the arterial response to ultrasound perturbation in-silico and in phantoms. Physics in Medicine and Biology, 2021, 66, 235008. | 3.0 | 3         |
| 152 | A Non-invasive Method to Estimate the Stress–Strain Curve of Soft Tissue Using Ultrasound<br>Elastography. Ultrasound in Medicine and Biology, 2022, 48, 786-807.                                                  | 1.5 | 3         |
| 153 | Orthogonal Frequency Ultrasound Vibrometry. , 2010, , .                                                                                                                                                            |     | 2         |
| 154 | Viscoelastic measurements on perfused and non-perfused swine renal cortex in vivo. , 2010, , .                                                                                                                     |     | 2         |
| 155 | Inversion of Lamb waves in Shearwave Dispersion Ultrasound Vibrometry (SDUV). , 2010, , .                                                                                                                          |     | 2         |
| 156 | Effect of prestretch on modes of shear wave propagation on arteries. , 2010, , .                                                                                                                                   |     | 2         |
| 157 | In vivo measurements of viscoelasticity of the swine heart using Shearwave Dispersionc Ultrasound<br>Vibrometry (SDUV). , 2010, , .                                                                                |     | 2         |
| 158 | Two-dimensional shear elasticity imaging using external mechanical vibration. , 2013, , .                                                                                                                          |     | 2         |
| 159 | Acoustic radiation force creep-recovery: Theory and finite element modeling. , 2013, , .                                                                                                                           |     | 2         |
| 160 | Recovering shear wave velocity in boundary sensitive media with two-dimensional motion tracking. , 2014, , .                                                                                                       |     | 2         |
| 161 | Effects of phase aberration on acoustic radiation force-based shear wave generation. , 2014, , .                                                                                                                   |     | 2         |
| 162 | Implementation of shear wave elastography on pediatric cardiac transducers with pulse-inversion                                                                                                                    |     | 2         |

harmonic imaging and time-aligned sequential tracking. , 2015, , .

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Complex background suppression for vibro-acoustography images. Ultrasonics, 2015, 56, 456-472.                                                                                                                                   | 3.9 | 2         |
| 164 | Shear Wave Elastography Applied for the Investigation of Tendon Material Properties. Academic Radiology, 2016, 23, 1201-1203.                                                                                                    | 2.5 | 2         |
| 165 | Simultaneous estimation of shear elastic modulus and backscatter coefficient: Phantom and in human liver in vivo study. , 2016, , .                                                                                              |     | 2         |
| 166 | Use of shear wave ultrasound vibrometry for detection of simulated esophageal malignancy in <i>ex vivo</i> porcine esophagi. Biomedical Physics and Engineering Express, 2016, 2, 065002.                                        | 1.2 | 2         |
| 167 | Mapped Chebyshev pseudo-spectral method for simulating the shear wave propagation in the plane of symmetry of a transversely isotropic viscoelastic medium. Medical and Biological Engineering and Computing, 2017, 55, 389-401. | 2.8 | 2         |
| 168 | Comparison of shear velocity dispersion in viscoelastic phantoms measured by ultrasound-based shear wave elastography and magnetic resonance elastography. , 2017, , .                                                           |     | 2         |
| 169 | Comparison of shear velocity dispersion in viscoelastic phantoms measured by ultrasound-based shear wave elastography and magnetic resonance elastography. , 2017, , .                                                           |     | 2         |
| 170 | Recent developments in spectral-based ultrasonic tissue characterization. , 2018, , .                                                                                                                                            |     | 2         |
| 171 | Evaluation of materials used for vascular anastomoses using shear wave elastography. Physics in<br>Medicine and Biology, 2019, 64, 075001.                                                                                       | 3.0 | 2         |
| 172 | Evaluation of Robustness of Local Phase Velocity Imaging in Homogenous Tissue-Mimicking Phantoms.<br>Ultrasound in Medicine and Biology, 2021, 47, 3514-3528.                                                                    | 1.5 | 2         |
| 173 | The influence of acoustic radiation force beam shape and location on wave spectral content for arterial dispersion ultrasound vibrometry. Physics in Medicine and Biology, 2022, 67, 135002.                                     | 3.0 | 2         |
| 174 | Safety of arterial shear wave elastography— <i>ex–vivo</i> assessment of induced strain and strain<br>rates. Biomedical Physics and Engineering Express, 0, , .                                                                  | 1.2 | 2         |
| 175 | Implementation of vibro-acoustography on a clinical ultrasound system. , 2010, , .                                                                                                                                               |     | 1         |
| 176 | Shear wave speed measurements using ultrasound radiation force can be depth dependent. , 2011, , .                                                                                                                               |     | 1         |
| 177 | Robust shear wave speed measurement using comb-push Ultrasound Radiation Force. , 2011, , .                                                                                                                                      |     | 1         |
| 178 | Measuring bladder viscoelasticity using ultrasound. , 2012, , .                                                                                                                                                                  |     | 1         |
| 179 | Measure elasticity and viscosity using the out-of-plane shear wave. , 2012, , .                                                                                                                                                  |     | 1         |
| 180 | Liver elasticity imaging using external Vibration Multi-directional Ultrasound Shearwave<br>Elastography (EVMUSE). , 2014, , .                                                                                                   |     | 1         |

| #   | Article                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | A two-dimensional finite difference model of shear wave propagation in anisotropic soft tissue. , 2014, , ,                                                                       |     | 1         |
| 182 | Viscoelastic characterization of transverse isotropic tissue mimicking phantoms and muscle. , 2014, , .                                                                           |     | 1         |
| 183 | A high frame-rate and low-cost Elastography system by generating shear waves through continuous vibration of the ultrasound transducer. , 2015, , .                               |     | 1         |
| 184 | In vivo liver shear wave motion detection and shear wave speed comparison between fundamental and harmonic imaging. , 2015, , .                                                   |     | 1         |
| 185 | In-plane anisotropy method for the characterization of the elastic properties of anisotropic materials. , 2015, , .                                                               |     | 1         |
| 186 | Measured wave dispersion in tubes excited with acoustic radiation force matches theoretical guided wave dispersion. , 2016, , .                                                   |     | 1         |
| 187 | C-Elastography: In Vitro Feasibility Phantom Study. Ultrasound in Medicine and Biology, 2020, 46, 1738-1754.                                                                      | 1.5 | 1         |
| 188 | Calculations of intensities for radiation force modeling with the software package FOCUS.<br>Proceedings of Meetings on Acoustics, 2010, , .                                      | 0.3 | 1         |
| 189 | Abstract TP44: Evaluating Mechanical Properties of Human Blood Clot Analogues Using<br>Ultrasound-mediated Optical Coherence Elastography. Stroke, 2020, 51, .                    | 2.0 | 1         |
| 190 | A New Plane Wave Compounding Scheme Using Phase Compensation for Motion Detection. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 702-710. | 3.0 | 1         |
| 191 | Improved two-point frequency shift power method for measurement of shear wave attenuation.<br>Ultrasonics, 2022, 124, 106735.                                                     | 3.9 | 1         |
| 192 | Multifrequency ultrasound radiation force excitation and motion detection of harmonically vibrating scatterers. Journal of the Acoustical Society of America, 2008, 123, 581-581. | 1.1 | 0         |
| 193 | Measurement of prostate viscoelasticity using Shearwave Dispersion Ultrasound Vibrometry (SDUV):<br>An in vitro study. , 2010, , .                                                |     | 0         |
| 194 | Shear wave construction with laterally moving radiation force excitations. , 2011, , .                                                                                            |     | 0         |
| 195 | Vibro-acoustography beamforming and imaging with a 1.75D array transducer. , 2011, , .                                                                                            |     | 0         |
| 196 | Shear wave speed measurement using an unfocused ultrasound push beam. , 2011, , .                                                                                                 |     | 0         |
| 197 | Shear wave speed measurement using repeated short push pulses. , 2012, , .                                                                                                        |     | 0         |
| 198 | Model-free compression creep methods for differentiation of lesion from background tissue. , 2012, , .                                                                            |     | 0         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Acoustic Radiation Force Creep and Shear Wave Propagation Method for Elasticity Imaging. , 2012, , .                                                                                      |     | 0         |
| 200 | Phase aberration effects on beam shape evaluated with particle motion in an elastic phantom. , 2013, , .                                                                                  |     | 0         |
| 201 | In vivo human assessment of bladder elasticity and compliance using Ultrasound Bladder Vibrometry (UBV) and comparison with urodynamic studies. , 2013, , .                               |     | Ο         |
| 202 | The effects of surrounding media on the shear wave propagation in plates as related to the dispersion velocity. , 2013, , .                                                               |     | 0         |
| 203 | Special issue on Quantitative Ultrasound-Based Tissue Characterization - Call for Papers. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, c5-c5.    | 3.0 | Ο         |
| 204 | Evaluating arterial and plaque elasticity with shear wave elastography in an ex vivo porcine model. , 2015, , .                                                                           |     | 0         |
| 205 | An ex-vivo setup for characterization of atherosclerotic plaque using shear wave elastography and micro-computed tomography. , 2016, , .                                                  |     | 0         |
| 206 | Introduction to the Special Issue on Quantitative Ultrasound-Based Tissue Characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 1231-1233. | 3.0 | 0         |
| 207 | Strain and strain rate generated by shear wave elastography in an ex vivo porcine aorta. , 2017, , .                                                                                      |     | 0         |
| 208 | A model-free approach to probe motion artifacts suppression for in vivo imaging with probe oscillation shear wave elastography (PROSE). , 2017, , .                                       |     | 0         |
| 209 | Notice of Removal: Measurement of carotid artery viscoelasticity in young and older individuals using acoustic radiation force-induced waves and Fourier analysis. , 2017, , .            |     | Ο         |
| 210 | Notice of Removal: Finite element models of wave propagation in embedded vessels with simulated plaques. , 2017, , .                                                                      |     | 0         |
| 211 | Attenuation measuring ultrasound shearwave elastography as a method for evaluating pancreatic viscoelasticity. Biomedical Physics and Engineering Express, 2019, 5, 065016.               | 1.2 | Ο         |
| 212 | Numerical Characterization of Shear Elasticity Values Estimated with the Time-of-Flight Approach. ,<br>2019, , .                                                                          |     | 0         |
| 213 | Power Law Behavior of Shear Waves Measured in Swine Liver. , 2019, , .                                                                                                                    |     | 0         |
| 214 | Abstract 139: Future Clinical Tools: Carotid Plaque Characterization via Shear Wave Elastography - A<br>Phantom Study. Stroke, 2015, 46, .                                                | 2.0 | 0         |
| 215 | Two-dimensional (2D) harmonic oscillation optical coherence elastography. , 2022, , .                                                                                                     |     | 0         |