Atsushi Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7831857/publications.pdf Version: 2024-02-01

Δτεμεμί ζάτο

#	Article	IF	CITATIONS
1	Glycan-binding Properties of Basic Whey Protein Lactoferrin and Its Application in Nerve Regenerative Medicine. Trends in Glycoscience and Glycotechnology, 2022, 34, J19-J23.	0.0	0
2	Glycan-binding Properties of Basic Whey Protein Lactoferrin and Its Application in Nerve Regenerative Medicine. Trends in Glycoscience and Glycotechnology, 2022, 34, E19-E23.	0.0	1
3	Improved Refolding of a Human IgG1 Fc (CH2-CH3) Scaffold from Its Inclusion Body in <i>E. coli</i> by Alkaline Solubilization. Biological and Pharmaceutical Bulletin, 2022, 45, 284-291.	0.6	2
4	Harnessing the chondroitin sulfate-binding characteristics of human lactoferrin to neutralize neurite outgrowth inhibition. Biochemical and Biophysical Research Communications, 2021, 534, 1076-1082.	1.0	8
5	BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities. Nature Communications, 2021, 12, 6767.	5.8	40
6	Albumin fusion at the N-terminus or C-terminus of human lactoferrin leads to improved pharmacokinetics and anti-proliferative effects on cancer cell lines. European Journal of Pharmaceutical Sciences, 2020, 155, 105551.	1.9	12
7	The pain-relieving effects of lactoferrin on oxaliplatin-induced neuropathic pain. Journal of Veterinary Medical Science, 2020, 82, 1648-1654.	0.3	1
8	Conditional Generative Adversarial Networks to Model iPSC-Derived Cancer Stem Cells. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2020, 24, 134-141.	0.5	4
9	Cellular Uptake and Release of Intact Lactoferrin and Its Derivatives in an Intestinal Enterocyte Model of Caco-2 Cells. Biological and Pharmaceutical Bulletin, 2019, 42, 989-995.	0.6	21
10	Hinge-Deficient IgG1 Fc Fusion: Application to Human Lactoferrin. Molecular Pharmaceutics, 2017, 14, 3025-3035.	2.3	7
11	Soluble Human Intestinal Lactoferrin Receptor: Ca ²⁺ -Dependent Binding to Sepharose-Based Matrices. Biological and Pharmaceutical Bulletin, 2016, 39, 435-439.	0.6	4
12	Affinity Selection of Peptide Binders with Magnetic Beads <i>via</i> Organic Phase Separation (MOPS). Biological and Pharmaceutical Bulletin, 2015, 38, 1822-1826.	0.6	4
13	Recombinant human lactoferrin-Fc fusion with an improved plasma half-life. European Journal of Pharmaceutical Sciences, 2015, 67, 136-143.	1.9	13
14	Amino Group PEGylation of Bovine Lactoferrin by Linear Polyethylene Glycol-p-nitrophenyl Active Esters. Biological and Pharmaceutical Bulletin, 2010, 33, 1253-1255.	0.6	8
15	PEGylated Lactoferrin Enhances Its Hepatoprotective Effects on Acute Liver Injury Induced by D-Galactosamine and Lipopolysaccharide in Rats. Journal of Veterinary Medical Science, 2010, 72, 173-180.	0.3	15
16	Lactoferrin Conjugated with 40-kDa Branched Poly(ethylene Glycol) Has an Improved Circulating Half-Life. Pharmaceutical Research, 2009, 26, 2125-2132.	1.7	44
17	PEGylated lactoferrin enhanced its hepatoprotective effects on acute liver injury induced by carbon tetrachloride in rats. Food and Chemical Toxicology, 2009, 47, 1453-1458.	1.8	15
18	The pH-Dependent Formation of PEGylated Bovine Lactoferrin by Branched Polyethylene Glycol (PEG)-N-Hydroxysuccinimide (NHS) Active Esters. Biological and Pharmaceutical Bulletin, 2009, 32, 523-526.	0.6	41

Atsushi Sato

#	Article	IF	CITATIONS
19	Development of Poly(ethylene glycol) Conjugated Lactoferrin for Oral Administration. Bioconjugate Chemistry, 2008, 19, 2253-2259.	1.8	52
20	A peptide mimetic of human interferon (IFN)-beta. Biochemical Journal, 2003, 371, 603-608.	1.7	15
21	Identification from a Phage Display Library of Peptides That Bind to Toxic Shock Syndrome Toxin-1 and That Inhibit Its Binding to Major Histocompatibility Complex (MHC) Class II Moleculesâ€. Biochemistry, 1996, 35, 10441-10447.	1.2	18